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INTRODUCTION 
 
Endocrine therapy is often the least toxic and most effective treatment for hormone receptor positive invasive 
breast cancer. Such therapy includes antiestrogens (tamoxifen, fulvestrant) and aromatase inhibitors 
(anastrozole, letrozole, exemestane). Tamoxifen (TAM) increases disease free and overall survival in the 
adjuvant setting, reduces the incidence of estrogen receptor positive disease (ER+; unless otherwise noted 
ER=ERα) in high-risk women, and reduces the rate of bone loss secondary to osteoporosis in postmenopausal 
women [1,2]. Aromatase inhibitors are effective only in the absence of functioning ovaries - TAM can be used 
regardless of menopausal status. Recent studies suggest that anastrozole may be superior to TAM in the 
adjuvant treatment of postmenopausal women with ER+ breast cancer; other studies report higher overall 
response rates with letrozole (LET) vs. TAM as first line therapy in the metastatic setting. Thus, a recent 
controversy in the management of patients with ER+ disease is whether an aromatase inhibitor or TAM should 
be given as first line endocrine therapy [3-9]. 
 
In this Clinical Translational Research award, we will build classifiers that accurately separate antiestrogen 
sensitive from antiestrogen resistant breast tumors and begin to assist in the direction of specific endocrine 
treatments (antiestrogen vs. aromatase inhibitor) to individual patients. We hypothesize that endocrine 
responsiveness is affected by a gene network, rather than the activity of only one or two genes or signaling 
pathways [10-12]. Since the key components of such a network are unknown, we must study 10,000s of genes. 
We will use Affymetrix GeneChips. We will not identify mutational events, the presence of mRNA splice 
variants, or post-translational protein modifications. However, these factors have major effects on the 
transcriptome and their "footprints" should be identified by expression microarrays. 
 
 

BODY 
 
Overview: We will build classifiers that separate antiestrogen sensitive from antiestrogen resistant breast 
tumors and begin to assist in the direction of specific endocrine treatments (antiestrogen vs. aromatase inhibitor) 
to individual patients. To achieve this goal, and consistent with a CTR award, we will complete a 4-year, 
prospective, neoadjuvant study with Letrozole (LET) or TAM as the only systemic therapy. We will obtain 
molecular profiles from Affymetrix GeneChips and further develop and apply our innovative bioinformatic and 
biostatistic methods to explore these high dimensional data sets and build/validate new classifiers. A more 
accurate predictor of endocrine responsiveness would have widespread clinical use, allowing women and 
physicians to make more individualized and appropriate treatment decisions. For example, patients with tumors 
predicted to be resistant to antiestrogens and/or aromatase inhibitors would be strong candidates for an early 
intervention with cytotoxic chemotherapy. 
 
In most predictive/prognostic marker studies investigators focus on a single factor and whether they obtain a p-
value that reaches conventional statistical significance. Our approach is different because we will determine 
whether we can find joint gene subsets that can separate patients into sufficiently distinct groups that should 
differ in their treatment. We will (1) analyze >33,000 genes on retrospective and prospective material, (2) apply 
new biostatistical and bioinformatic methods to identify ~40 potentially informative "biomarkers," (3) build 
neural network and biostatistical model classifiers, (4) evaluate the joint discriminant power of selected genes 
concurrently rather than as single biomarkers, (5) focus on prediction for individual patients where the 
assessment of a p-value is less important than the classification rate of our predictors, (6) validate the classifiers 
in independent data sets, and (7) explore the ability of predictors to refine the targeting of specific endocrine 
therapies. 
 
Evidence has begun to accumulate suggesting that an aromatase inhibitor might be a more effective first line 
endocrine therapy for some breast cancer patients than the current standard of care (Tamoxifen). These data 
have generated considerable interest and controversy, in part because unlike TAM, there are no long term 
studies with aromatase inhibitors where definitive survival data are available. Our study could provide new and 
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innovative insights into how to approach the more effective targeting of specific endocrine therapies to 
individual patients. 

 
 

Specific Aims  
We will complete two clinical studies and collect gene expression profiles from which to build predictors of 
endocrine responsiveness. Predictors will be built in Specific Aim 2 and validated in Specific Aim 3. 
 
AIM 1: Clinical Studies - Clinical Study-1 (retrospective) is of pretreatment, single, frozen samples where we 
will compare the molecular profiles of tumors that recurred on TAM with those of tumors that did not recur. 
Each resistant sample is matched with a TAM sensitive sample by age, stage, and duration of follow-up. We 
also have further, single (unmatched), frozen samples from patients already progressing on TAM. Clinical 
Study-2 is a prospective study of breast tumor samples from patients treated with neoadjuvant TAM or LET.  
 
AIM 2: We will develop and apply novel bioinformatics and biostatistics to discover gene subsets that define the 
molecular differences between endocrine sensitive and resistant breast tumors. These genes will be used, in 
combination with established predictive/prognostic factors, e.g., ER, PgR, stage, to build innovative classifiers 
that can better predict an individual tumor’s endocrine responsiveness. 
 
AIM 3: We will test, optimize, and validate the performance of the classifiers from Aim 2 in retrospective 
studies of human breast tumors. We will measure each gene individually by IHC, in situ RNA hybridization 
(ISH), or real time PCR (RT-PCR). 
 
 

KEY RESEARCH ACCOMPLISHMENTS 
 
As noted in previous reports, progress on the clinical goals for this award was greatly delayed because of the 
time taken to obtain DOD approval of our preexisting institutionally approved IRBs at Georgetown University 
and at the University of Edinburgh. All institutionally approved protocols and requested material were 
submitted to the DOD in July 2004; additional information was requested by the DOD several months later and 
submitted in November 2004. We did not receive final approval to proceed with the clinical studies until March 
2005. Much of this delay seems to have been entirely unavoidable (see prior reports). Clearly, this has likely left 
us behind schedule in recruitment to the prospective studies. We have made significant strides in our 
development of new analytical procedures, and we have been successful in using our emerging data to support 
additional applications for funding. Publications supported since the commencement of this award are listed 
under “Reportable Outcomes”; these constitute some of our major accomplishments in the past year. These and 
other key research accomplishments are presented below.  
 
 

Progress on our Statement of Work (SOW from the original application) 
 

• TASK 1. Array breast tumor samples from Clinical Studies 1 (retrospective) and 2 (prospective)   
 
We have now received a total of 481 breast specimens from our collaborators at the University of Edinburgh. 
These specimens arrived at different times and were initially banked so that they could be processed in the most 
effective and logical manner. These specimens represent a mix of the initial prospective and most of the 
retrospective specimens. We have processed all of these specimens as frozen sections and all 481 have now 
been fully analyzed and annotated by the study pathologist. We have successfully extracted total RNA from 357 
specimens, and labeled 169 for analysis. We have also completed the hybridization and assessment of 
microarray data quality control on 102 breast cancer specimens.  

We requested that the specimens be sent independent of the clinical information, so that we could 
adequately and appropriately randomize the RNA preparation, labeling and hybridization and minimize any 
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operator-induced or technology-induced bias. All specimens were processed using our standard operating 
procedures; each manipulation being performed by the same individual to further reduced inter-operator 
variability. Details of the methods, quality control measures and general experimental approaches have been 
described in detail in earlier annual reports.  

In general, we have found the material from our collaborators to be of high quality. Over 80% of the 
specimens have yielded RNA with an estimated RIN value of ≥5.0, which we have found produces good quality 
expression data. Some of the specimens with slightly lower RIN values also will be useful but we will first 
label, hybridize and array the best quality specimens. While not all cases generate adequate RNA, and a small 
number of tissues have very little neoplastic tissue (most likely the best responders), thee data suggest that we 
should be able to address our central hypotheses as initially anticipated.  

We have also found these data to be particularly useful in supporting other studies that are ongoing in the 
laboratory. For example, these data have been used to support two pending R01 applications on genes we 
identified and described in the preliminary data for this application. We have also used these data to provide 
preliminary data on gene expression values that have led to our colleagues initiating other studies directed at 
developing therapeutic strategies to target individual genes we have identified from within this data set or from 
other sources. 
 
 

• TASK 2. Store, process, and train/optimize classifiers from gene expression microarray data (modified 
to reflect our adoption of caArray) 

 
As noted in our previous reports, we continue to make significant progress on addressing this task, largely as a 
consequence of our involvement in the National Cancer Institute Center for Bioinformatics (NCICB) led caBIG 
project. The PI (Dr. Clarke) leads the Lombardi Comprehensive Cancer Center’s caBIG team and we have been 
actively involved in the development of caArray (NCICB’s grid-enabled, MIAME compliant, microarray 
database). Indeed, we will host a key caBIG face-to-face meeting at our institute that will represent a joint 
meeting between the Architecture and Vocabulary and Common Data Elements Workspaces members.  
 
With respect to the further development and optimization of data analysis algorithms, we have begun to develop 
novel approaches for network analysis that will allow us to further identify potentially novel targets for 
therapeutic intervention in subsequent studies. We anticipated obtaining such information in our original 
application, and we have found approaching this goal to be realistic in a much shorter time frame than initially 
expected.  
 
We also continue to improve our existing algorithms and have recently submitted for publication a short 
communication on the implementation and uses of our VISDA algorithms (described in the initial application). 
As described in last year’s report, we see the potential to obtain novel mechanistic insights as a significant 
advantage to our ongoing studies. We will provide additional information in this regard in subsequent reports; 
relevant publications in this area are included below in the section “Reportable Outcomes.” 
 
 

• TASK 3. Retrain/reoptimize classifiers using IHC data from Series 1 (Archival Tissues) and Series 2 
(Scottish Adjuvant TAM Trial) for Validation    

 
To perform this task we will obtain clinical information and breast tumor samples from University of Edinburgh 
(formalin fixed/paraffin embedded). We will rank and prioritize selected joint genes from RNA classifier built 
and optimized in TASK 2 (above) and retrain/reoptimize the initial neural network IHC classifier (MLP). 
Finally, we will validate IHC classifier on independent data sets (data sets not used to build and train the MLP 
classifiers). 
  
We remain unable to move this task substantially forward on the timeframe as initially proposed because of the 
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delays in getting approval to work with the clinical specimens. It is addressing this aim in detail that will be the 
greatest consideration in assessing the need to take the reviewer’s advice from their assessment of last year’s 
report that a request for a no-cost extension may be advisable (see also “Conclusions” below). 
 
 

REPORTABLE OUTCOMES 
 
Papers and Meeting Reports* 
 
Updates (cited as “in press” in the last report and now in print) 
 

• Ressom, H.W., Zhang, Y.,  Xuan, J., Wang, Y. & Clarke, R. “Inference of gene regulatory networks 
from time course gene expression data using neural networks and swarm intelligence.” IEEE Symp 
Compl Intel Bioinf Comput Biol, 435-442, 2006. 

 
 
New Publications (for the present reporting period) 
 

• Wang, L.H., Yang, X.Y., Zhang, X., An, P., Kim, H.-J., Huang, J., Clarke, R., Osborne, C.K., Inman, 
J.K., Appella, E. & Farrar, W.L. “Disruption of estrogen receptor DNA-binding domain and related 
intramolecular communication restores tamoxifen sensitivity in resistant breast cancer.” Cancer Cell, 10: 
487-499, 2006. 

 
• Bouker, K.B., Skaar, T.C., Harburger, D.S., Riggins, R.B., Fernandez, D.R., Zwart, A. & Clarke, R. 

“The A4396G polymorphism in interferon regulatory factor-1 is frequently expressed in breast cancer.” 
Cancer Genet Cytogenet, 175: 61-4, 2007. 

 
• Wong, L.-J.C., Dai, P., Lu, J.-F., Lou, M.A., Clarke, R. & Nazarov, N. “AIB1 gene amplification and 

the instability of polyQ encoding sequence in breast cancer cell lines.” BMC Cancer 6: 111-132, 2006. 
 

• Kuske, B., Naughton, C., Moore, K., MacLeod, K.G., Miller, W.R., Clarke, R. Langdon, S.P. & 
Cameron, D.A. “Endocrine therapy resistance can be associated with high estrogen receptor alpha (ERα) 
expression and reduced ERα phosphorylation in breast cancer models.” Endocr Related Cancer, 13: 
1121-1133, 2006. 

 
• Gong, T., Xuan, J., Zhu, J., Li, H., Clarke, R., Hoffman, E. & Wang, Y. “Composite gene module 

discovery using non-negative independent component analysis.” IEEE/NLM Life Sci Sys Apps Workshop, 
1-3, 2006. 

 
• Feng, Y., Wang, Z., Zhu, Y., Xuan, J., Miller, D., Clarke, R., Hoffman, E.P. & Wang, Y. “Learning the 

tree of phenotypes using genomic data and VISDA.” 6th IEEE Symp Bioinf Bioeng (BIBE ’06), 165-170, 
2006 

 
• Gong, T., Zhu, Y., Xuan, J., Li, H., Clarke, R., Hoffman, E.P. & Wang, Y. “Latent variable and nICA 

modeling of pathway gene module composite.” Proc 28th IEEE EMBS Intl Conf, pp. 5872-5875, 2006. 
 

• Ressom, H.W., Zhang, Y., Xuan, J., Wang, Y. & Clarke, R. "Inferring network interactions using 
recurrent neural networks and swarm intelligence," Proc 28th IEEE EMBS Intl Conf, pp. 4241-4244, 
2006. 

 
*We include in the appendix reprints of those papers that are already published adn for which we have proofs or 
reprints. We do not list here or include in the appendices any published abstracts, but can do so if requested. 



 
Award Number: W81XWH-04-1-0570      PI: Robert Clarke, Ph.D., D.Sc. 

Page 8 

Several other manuscripts related to our bioinformatic methods also are submitted and in preparation – these 
will be cited reported in the next report. Please note that the papers published in the engineering literature are 
different from most conference proceedings in the biomedical literature. These are not abstracts but fully peer-
reviewed publications comparable to short communications in biomedical journals. 
 
Comment on Subcontracts: Please also note that the majority of our publications here and in prior years include 
coauthors from one or both of our subcontracts. Thus, our program is working very effectively and 
collaboratively, this should further be apparent in the development of new informatics methods (Virginia 
Polytechnic and State University subcontract) and the large number of high quality breast tumor specimens we 
have obtained from the University of Edinburgh.  
 
 

CONCLUSIONS 
 
We have made good progress on the research infrastructure goals and in the development or optimization of the 
methods needed for data analysis. We also have completed and published all of the data presented as 
preliminary data in the initial application. The clinical studies were held up by an unexpectedly long delay in 
obtaining final approval for our existing protocols. As noted by the reviewer of last year’s annual report, this 
delay will adversely affect the prospective study and this reviewer indicated that a request for a one-year no cost 
extension might be required. We concur that this may yet be required and will evaluate the need for this over 
the next six months. If deemed necessary, we will apply for such an extension in writing before the end of the 
original funding period, this should ensure that we remain in compliance with USAMRMC guidelines, maintain 
continuity of the project and successfully complete our studies.  
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Abstract— We present a novel algorithm that combines a 
recurrent neural network (RNN) and two swarm intelligence (SI) 
methods to infer a gene regulatory network (GRN) from time 
course gene expression data. The algorithm uses ant colony 
optimization (ACO) to identify the optimal architecture of an 
RNN, while the weights of the RNN are optimized using particle 
swarm optimization (PSO). Our goal is to construct an RNN 
whose response mimics gene expression data generated by time 
course DNA microarray experiments. We observed promising 
results in applying the proposed hybrid SI-RNN algorithm to 
infer networks of interaction from simulated and real-world gene 
expression data.  

I. INTRODUCTION 

Gene regulatory network (GRN) is a model of a network 
that describes the relationships among genes in a given 
condition. The model can be used to enhance the 
understanding of gene interactions and better ways of 
elucidating environmental and drug-induced effects.  

Large-scale monitoring of gene expression such as DNA 
microarrays [1-4] is considered to be one of the most 
promising techniques for making the discovery of GRNs 
feasible [5].  However, the task of inferring GRNs involves 
several challenges including the following: (1) the number of 
related genes is very large compared to the number of samples 
or time points, (2) the observed data involve a significant 
amount of noise, and (3) the interaction among genes displays 
complex (nonlinear and dynamic) relationships. This 
challenge provides computer scientists, statisticians, and 
engineers with opportunities to expand their knowledge of 
intelligent methods to provide models for better understanding 
of biological systems.  

The field of system modeling plays a significant role in the 
discovery of GRNs. Several system modeling approaches have 
been proposed to reverse-engineer network interactions 
including a variety of continuous or discrete, static or 
dynamic, quantitative or qualitative methods [1-6].  

The use of computational intelligence (CI) methods for 
system modeling has gained particular interest, because they 
require little a priori knowledge about the underlying system 
and the model can be derived from data. Given a set of data, 

these methods discover hidden regularities and structures 
within the data. Instead of requiring patterns to be known 
ahead of time, they search automatically for patterns that are 
hidden in the data.  

Several CI methods have been proposed [7-14] for GRN 
reconstruction. These methods have been successfully applied 
in both cluster- and classification-based approaches. For 
example, in [9], a neural model is used to simulate the 
dynamics of the lambda phage regulatory system. Middendorf 
et al. [15] used decision trees to predict whether a gene is up- 
or down-regulated in a particular experiment on the basis of 
the presence of binding site subsequences (motifs) in the 
gene’s regulatory region and the expression level of regulators 
such as transcription factors in the experiment. Soinov et al. 
[16] applied decision-tree based classifier to extract simple 
rules defining gene interrelations. In [17], an approach is 
proposed based on fuzzy rules of a known activator/repressor 
model of gene interaction. This algorithm transforms 
expression values into qualitative descriptors that can be 
evaluated by using a set of heuristic rules and searches for 
regulatory triplets consisting of activator, repressor, and target 
gene. This approach, though logical, is a brute force technique 
for finding gene relationships. It involves a significant 
computation time, which restricts its practical usefulness. 
Also, this method is limited to the study of the interaction 
between one possible positive and one negative regulator for 
each gene.  In [18], we proposed the use of clustering as an 
interface to a fuzzy logic-based method to improve the 
computational efficiency. A scalable linear variant of fuzzy 
logic is introduced in [19] to examine the interactions of 
multiple genes. Genetic algorithms (GAs) have also been 
applied to decipher genetic networks from gene expression 
data [10-12]. Shin and Iba [12]  developed an inference 
algorithm based on GAs for the optimization of the influence 
matrix of GRN. In [14], GAs and ANNs are combined to 
determine gene interactions in temporal gene expression data. 

To capture the nonlinear and dynamic relationships, we 
propose to model GRNs using recurrent neural networks 
(RNNs), which consist of nonlinear processing elements 
(neurons) that possess feedback and memory units. The 
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architecture and the synaptic weights of RNNs are optimized 
using two recently introduced swarm intelligence (SI) 
methods, ant colony optimization (ACO) and particle swarm 
optimization (PSO) methods, respectively.  The hybrid SI-
RNN algorithm is applied to infer networks of interactions 
from simulated and real-world gene expression data, yielding 
promising results. 

The paper is organized as follows. Section II highlights the 
steps involved in using CI for system modeling. Section III 
describes our proposed SI-RNN algorithm for inferring 
network interactions. Section IV presents networks inferred 
from simulated and yeast cell cycle gene expression data. 
Finally, Section V concludes the paper. 

II. SYSTEMS MODELING USING CI METHODS 

Besides selecting a suitable CI paradigm, developing an 
intelligent model involves four steps: data preparation, model 
structure selection, learning, and model evaluation. These 
steps are repeated until the last step results in a satisfactory 
performance.  

Many times the “raw” data are not the best data to use for 
modeling a CI paradigm. Hence, in using CI paradigms to 
solve real-world problems, it is important to transform raw 
data into a form acceptable to the paradigm. The first step is to 
decide what the inputs and outputs are. Inputs that are not 
relevant for modeling should be excluded. The next step is to 
process the data in order to handle missing data, remove 
outliers, and to normalize and scale the data into acceptable 
range. This will be followed by model structure selection, 
which includes the choice of neural network architecture, 
fuzzy rules, membership functions, fuzzy operators, genetic 
operators, and coding scheme. The selection of neural network 
architecture includes choosing activation functions, 
appropriate number of layers, number of neurons in each 
layer, and the interconnection of the neurons and the layers. 
After the model structure is selected, its free parameters will 
be determined. The predominant feature of CI paradigms is 
that they learn from data. We define learning as the process of 
finding the free parameters of a CI model (e.g. determining the 
weights of a neural network). After learning is completed, a CI 
paradigm is evaluated for its performance through testing. The 
purpose of this testing is to prove the adequacy or to detect the 
inadequacy of the fitted model. The latter could arise from an 
inappropriate selection of network topology, too small or too 
many neurons, or from insufficient training or overtraining. 
Incorrect input node assignments, noisy data, error in the 
program code, or several other effects may also cause a poor 
fit. The aim of model evaluation is to insure that the model fit 
is correct; that the model satisfies the desired requirements, 
and that it serves as a general model. A general model is one 
whose input-output relationships (derived from the training 
dataset) apply equally well to new sets of data (previously 
unseen test data) from the same problem not included in the 
training set. The main goal of intelligent modeling is thus the 
generalization to new data of the relationships learned on the 

training set. 
The choice of appropriate CI paradigm is critical to the 

modeling process. This primarily depends on the complexity 
of the underlying system to be modeled, the available 
information (a priori knowledge and data), and the existence 
of a suitable learning algorithm. In recent years, ANNs have 
been employed successfully for modeling a wide range of 
nonlinear systems. They generally consist of a number of 
interconnected processing elements known as neurons. The 
way neurons are interconnected or how the inter-neuron 
connections are arranged determines the architecture of a 
neural network. The strengths of the connections (known as 
weights or synaptic weights) are adjusted or trained to achieve 
a desired overall behavior of the network. The most popular 
architecture is a feedforward neural network, where the 
neurons are grouped into layers. All connections are 
feedforward; that is, they allow information transfer only from 
an earlier layer to the next consecutive layers. It is known that 
ANN can sufficiently approximate the nonlinear mapping, 
learn to adapt to dynamics of uncertain systems, and have 
strong robustness and fault-tolerant abilities due to the rich 
connection and nonlinear activation functions of the neurons. 
In light of the above advantages, neural network based 
approaches have shown the superiority over the well-
established and proven conventional methods for 
parameter/state estimation for a large class of problems and 
systems. However, in order to perform a time series prediction 
or build a model of a dynamical system such as one that 
represents regulatory interactions, it is important to establish a 
form of expansion to the feedforward neural network, so that 
the network contains some type of memory element. This can 
be achieved by applying time-delayed inputs to feed forward 
networks. Alternatively, an RNN can be built, in which the 
outputs of some neurons are fed back to the same neurons or 
to other neurons in the network. Thus, signals can flow in both 
forward and backward directions. RNNs have a dynamic 
memory - their outputs at a given instant reflect the current 
model input as well as previous inputs and outputs. It is an 
ideal candidate for modeling dynamic systems such as 
network interactions in biological systems.  

III. INFERRING NETWORK INTERACTION USING SI-RNN 

In building an RNN to infer a network of interactions, the 
identification of the correct structure and determination of the 
free parameters (weights and biases) to mimic measured data 
is a challenging task given the limited available quantity of 
data. For example, in inferring a GRN from microarray data, 
the number of time points is considerably low compared to the 
number of genes involved. Considering the complexity of the 
biological system, it is difficult to adequately describe the 
pathways involving a large number of genes with few time 
points. In this paper, we apply ACO and PSO methods to 
select the optimal architecture of an RNN and to update its 
free parameters, respectively.  ACO is a discrete optimization 
algorithm that has been successfully used for combinatorial 



 

problems, while PSO is applied for continuous optimization 
(i.e., the variables in the objective function can assume real 
values). We formulated the selection of RNN structures as a 
combinatorial problem that can be effectively optimized by 
ACO. The optimal parameters of an RNN for a given structure 
can be obtained by using PSO as this is a continuous 
optimization problem. 

A. Recurrent Neural Network 
Figure 1a shows an RNN, where the output of each neuron 

is fed back to its input after a unit delay and is connected to 
other neurons. It can be used as a model of gene regulatory 
network, where every gene in the network is considered as a 
neuron. The RNN can model not only the interactions between 
genes but also gene self-regulation, which is represented by a 
unit delay (z-1).  

 

 
 (a)   (b) 

Figure 1. (a) Architecture of a fully connected RNN; (b) Details of a single 
recurrent neuron. 

Figure 1b illustrates the details of the ith self-feedback 
neuron (e.g. ith gene in the GRN), where vi, known as the 
induced local field (activation level), is the sum of the 
weighted inputs (the regulation of other genes) to the neuron 
(ith gene); and ϕ(.) represents an activation function 
(integrated regulation of the whole RNN on ith gene), which 
transforms the activation level of a neuron into an output 
signal (regulation result). The induced local field and the 
output of the neuron, respectively, are given by: 
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where the synaptic weights wi1, wi2,…, wiN define the strength 
of connection between the ith neuron (e.g. ith gene) and its 
inputs (e.g. expression level of genes). Such synaptic weights 
exist between all pairs of neurons in the network. bi denotes 
the bias for the ith neuron. We denote sG as a structure vector 
that describes the architecture of the network, and wG  as a 
weight vector that consists of all the synaptic weights and 
biases in the network. sG  and wG  are adapted during learning 
to yield the desired network outputs. The activation function φ 

introduces nonlinearity to the model. When information about 
the complexity of the underlying system is available, a 
suitable activation function can be chosen (e.g. linear, logistic, 
sigmoid, threshold, hyperbolic tangent sigmoid or Gaussian 
function.) If no prior information is available, our algorithm 
uses the hyperbolic tangent sigmoid function.  

As a cost function, we use the mean-squared error between 
the expected output and the network output across time (from 
the initial time point t0 to the final time point tf) and across 
neurons in the network. The cost function can be written as: 

 [ ]∑∑
= =

−=
ft

tt

N

i
ii

f

txtx
Nt

wE
0 1

2)(ˆ)(1)( G  (3) 

where xi(t) and )(ˆ txi are the true and predicted values 
(expression levels) for the ith neuron (gene) at time t. The goal 
is to determine the structure vector sG and weight vector wG  
that minimize this cost function. We propose ACO and PSO to 
optimize sG and wG , respectively. 

Note that the above RNN is self-evolutionary and can be 
used to model a multi-step-ahead prediction. The RNN starts 
with a given initial condition, evolves, and eventually reaches 
final states. In this study, we inferred a network from a 
simulated dataset generated by a five-node network using both 
one-step-ahead and multi-step-ahead forms, which resulted in 
similar performance. For real-world gene expression data that 
involve noise and unequal time intervals, we use the one step-
ahead prediction method during training. However, the 
resulting RNN can be used to simulate multiple-ahead 
predictions. 

B. Ant Colony Optimization 
Ant colony optimization studies artificial systems that take 

inspiration from the behavior of real ant colonies. The basic 
idea of ACO is that a large number of simple artificial agents 
are able to build good solutions to solve hard combinatorial 
optimization problems via low-level based communications. 

We propose to use ACO to optimize the structure vector sG . 
Each possible network structure sG  is defined by a 
combination of n features ][ 21 nssss "G = , where sj is an n-
bit binary string that indicates which neurons are controlled by 
neuron j. Each sj is selected from 2n candidate features. For 
each neuron j, we define the function in Eq. (4) to determine 
the probability of selecting a feature i among the 2n

 candidate 
features:  
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where )(kj
iτ is the amount of pheromone trail for the ith 

feature at iteration k. At k=0, )(kj
iτ  is set to a constant for all 

features, allowing each feature to have equal probability of 
being selected. Thus, in the first iteration, each ant chooses 
randomly n features that make up a structure ( sG , a trail). Let 
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sG  be an ant consisting of n features ][ 21 nssss "G
= . 

Depending on the performance of sG , the amount of 
pheromone trail of all features in sG  is updated. The 
performance function here is evaluated on the basis of 
mimicking the response of the system under study. To 
estimate the performance of sG , we construct an RNN that has 
the structure defined in sG . Then, we optimize the weights of 
the RNN using PSO. The response of the resulting RNN will 
be compared with the measured/observed response of the 
system under study.  The amount of pheromone trail for each 
element in sG  is updated in proportion to the performance of 
the structure. Assuming that the ith feature for the jth neuron 
was in sG , the corresponding amount of pheromone trail will 
be updated as follows: 

)()(.)1( kkk i
j

i
j

i ττρτ ∆+=+  (5) 
where ρ is a constant between 0 and 1, representing the 
evaporation of pheromone trails, and ∆τi(k) is an amount 
proportional to the performance by sG . ∆τi(k) is set to zero, if 
si∉ sG . This update is made for all N ants ( 1sG ,…, NsG ). Note 
that at k=0, ∆τi(k) is set zero for all features. The updating rule 
allows trails that yield good performance to have their amount 
of pheromone trail increased, while others will evaporate. As 
the algorithm progresses, features with large amounts of 
pheromone trails influence the probability function to lead the 
ants towards them. 

C. Particle Swarm Optimization 
 In the PSO algorithm, each particle is represented as a 

vector iwG  and instantaneous trajectory vector )(kwi
G∆ , 

describing its direction of motion in the search space at 
iteration k. The index i refers to the ith particle. The core of 
the PSO algorithm is the position update rule (6) which 
governs the movement of each of the n particles through the 
search space. 
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At any instant, each particle is aware of its individual best 

position, )(, kw besti
G , as well as the best position of the entire 

swarm, )(, kw bestG
G  . The parameters c1 and c2 are constants that 

weight particle movement in the direction of the individual 
best positions and global best positions, respectively; and r1,j 
and r2,j, Dj …,2,1=  are random scalars distributed uniformly 
between 0 and 1, providing the main stochastic component of 

the PSO algorithm.  
The constriction factor, χ , may also help to ensure 

convergence of the PSO algorithm, and is set according to the 
weights c1 and c2 as in (7). 
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The key strength of the PSO algorithm is the interaction 
among particles. The second term in (6), ))()(( ,2 kwkw ibestG

GG
−Φ , 

is considered to be a “social influence” term. While this term 
tends to pull the particle towards the globally best solution, the 
first term, ))()(( ,1 kwkw ibesti

GG
−Φ , allows each particle to think for 

itself. The net combination is an algorithm with excellent 
trade-off between total swarm convergence, and each 
particle’s capability for global exploration. Moreover, the 
relative contribution of the two terms is weighted 
stochastically.  

The algorithm consists of repeated application of the 
velocity and position update rules presented above. 
Termination can occur by specification of a minimum error 
criterion, maximum number of iterations, or alternately when 
the position change of each particle is sufficiently small as to 
assume that each particle has converged.  

Selection of appropriate values for the free parameters of 
PSO plays an important role in the algorithm’s performance. 
In our study, parameters c1 and c2 were arbitrarily selected (c1 
= 2.05, c2 = 2.05), with constriction factor, χ, determined by (7) 
and the maximum velocity was set at 2. 

D. SI-RNN 
In this section, we illustrate how the two SI methods, ACO 

and PSO, work together to optimize both sG and wG  of an 
RNN to mimic the response of an unknown network of 
interactions. Each node in the true network is represented by a 
neuron in the RNN. We assume that the number of nodes in 
the network is known (e.g. the number of genes for which a 
gene regulatory network is to be modeled is known), but the 
way the nodes interact is assumed to be unknown.  

ACO starts with initial candidate ants that define various 
structures. For example, let Fig. 2(a) be the structure for the 
true interaction that has three nodes and Fig. 2(b) be one of the 
randomly selected initial structures by ACO. For each of these 

(7)

 
Figure 2. True network (a); randomly selected network (b). 

(6) 



 

two systems, the corresponding structure vector sG  is shown in 
the figure, where sj (j = 1, 2, 3) is a three-bit binary string that 
indicates which neurons (including itself) are controlled by the 
ith neuron. For example, if s1 = [0 1 1], it implies that the first 
neuron controls all others except itself and s2 = [0 0 1] implies 
that the second neuron controls the third neuron only.  

PSO searches for the optimal weight vector wG  to minimize 
the difference between the output of the true network and the 
RNN using the training data. Only the elements of wG  that 
correspond to nonzero entries in sG  are updated by PSO. For 
example, the weight vector wG  in Fig. 2b contains only two 
variables: 0.25 and 0.4, corresponding to the two nonzero 
entries in the structure vector sG .  

The optimal weight vectors for all randomly selected 
structures (ants) are tested with previously unseen validation 
data. The performance of each particle in simulating the 
validation data is returned to ACO to update the trails of the 
ants in the search space (i.e., update the structure vector s

G ). 
The new sj’s in sG  are used to construct a new candidate 
structure. This will lead to a structure that is more similar to 
the global best structure than the previous one. The 
assumption in this algorithm is that the prediction error of an 
arbitrary network will be larger than a network that matches 
the correct structure. Through subsequent iterations, the ACO 
and PSO search for the optimal structure vector sG and weight 
vector wG  to make accurate predictions. 

Figure 3 illustrates the overall algorithm, which involves 
the two major components: (i) ACO that initially generates 
various topologies randomly and selects the most optimal 

structure iteratively based on the prediction performance of 
the topologies in a validation dataset and (ii) PSO that 
determines the free parameters of a given topology with the 
aim of minimizing the error between the training data and the 
outputs of the networks whose topologies are determined by 
ACO. The performance of the PSO particles in predicting the 
validation dataset is used to iteratively update the network 
structure. The process continues until satisfactory result is 
found or maximum number of iterations is reached. The final 
network will be evaluated via independent testing dataset. 

IV. DATA AND RESULTS 

The SI-RNN algorithm is evaluated in inferring networks of 
interactions from artificial and yeast cell cycle data. 

A. Artificial Data 
We applied the SI-RNN approach to identify the network in 

Fig. 4. We generated three datasets (training, validation, and 
testing) with different initial conditions. Each dataset 
consisted of 20 time points. These artificial data sets are 
created to ascertain the ability of the algorithm to “rediscover” 
the underlying network that generated the data. 

 An RNN model of five neurons with hypothetic tangent 
sigmoid activation function was trained using the SI-RNN 
algorithm. PSO used the training dataset to determine the 
optimal weight vector wG  for each structure vector s

G  defined 
by ACO. The performance of each structure in predicting the 
outputs of the network in the validation dataset is used by 
ACO to determine the optimal structure. The algorithm was 
run 100 times. In each run, Eq. 3 was evaluated 1000 times to 
identify the structure that leads to the least cost. 54 runs (out 
of 100) predicted a RNN with identical structure to Fig. 4. 
16% of the runs also predicted the true network structure, but 
they had two or three additional connections. The remaining 
30% consisted of arbitrary structures. Fig. 5 shows the outputs 
of the true network and the predicted RNN for the testing 
dataset. 

 

 
Figure 4. A simulated five-node network. 

B.  Yeast Cell Cycle Data 
The yeast cell cycle data collected by Spellman et al. [20] 

consist of six time series (cln3, clb2, alpha, cdc15, cdc28 and 
elu) expression measurements of the transcript (mRNA) levels 
of S. cerevisiae genes.  

To test our approach, we chose five cyclin genes (CLB1, 
CLB2, CLB5, CLB 6 and CDC28), which are involved in cell-
cycle regulation. The expression levels of these genes in three 
time series measurements were used to construct a GRN. In 
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Figure 3. Flowchart for the SI-RNN algorithm. 
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these datasets, the biological samples were synchronized by 
three different methods: α factor arrest, arrest of a cdc15, and 
cdc28 temperature-sensitive mutant. We used the cdc15 
dataset, which has 24 experimental conditions, as training 
dataset. The other two datasets, alpha and cdc 28, which have 
18 and 17 time points, were used as validation and testing 
datasets, respectively. 

 

 
Figure 5. Original and predicted outputs of the testing dataset. 

 

 

 

 

 

 
Figure 6. Original and predicted outputs of five genes in the testing dataset 

(cdc28 dataset). 



 

PSO used the training dataset to determine the optimal 
weight vector wG  for each structure vector s

G  defined by 
ACO. The performance of each structure in predicting the 
outputs of the network in the validation dataset is used by 
ACO to determine the optimal structure. The algorithm was 
run 10 times. In each run, Eq. 3 was evaluated 1000 times to 
identify the structure that leads to the least MSE. To improve 
the prediction accuracy, only the connections obtained in at 
least 50% of the runs were selected. Fig. 6 shows the 
measured gene expression data and the outputs of the 
predicted RNN for each gene in the testing dataset. 

As the true GRN that governs the interaction among the five 
genes is not available, the accuracy of the network is 
determined by how well it fits the measured gene expression 
data. To get insight into the performance of the SI-RNN 
method, we randomly generated 100 RNN structures and 
optimized their parameters using PSO. The average and 
standard deviation of the MSE for the 100 randomly generated 
RNN were 0.25 and 0.14, respectively, while the optimal 
RNN structure found through the SI-RNN method yielded an 
average MSE = 0.1 and standard deviation = 0.08 in 10 runs. 
Note that the MSE is calculated for the data normalized 
between 0 and 1. 

To further evaluate the GRN identified by SI-RNN, we 
searched for known interactions in a S. cerevisiae database 
provided by the PathwayStudio software (Ariadne Genomics, 
Rockville, MD). Figures 7a and 7b depict the interactions 
among the five genes found by the PathwayStudio software 
and by our hybrid SI-RNN algorithm, respectively. Table I 
illustrates the gene relationships depicted in Fig. 7. 

Among the 11 relations predicted by SI-RNN, five of them 
concur with the known interactions obtained by 
PathwayStudio. Two gene self-regulations (CLB1 and CLB2) 
were found by SI-RNN, but not by PathwayStudio. Four other 
relations (presented by dotted lines in Fig. 7b) are also found 
by PathwayStudio, but with reversed direction of regulation. 
PathwayStudio searches for known interactions on the basis of 
literature mining through natural language processing 
methods. From the literature used by PathwayStudio, it 
appears that the three “reversed” relations are described to 
have some relations without a defined direction of regulation. 
For example, CLB5 and CLB6 are essential for sporulation 
because they are required for premeiotic DNA replication 
[21]. This indicates that there maybe some relationship 
between these two genes, but not necessarily a directed 
regulation from CLB5 to CLB6. Another example is the 
relationship between CLB6 and CDC28. In [22], it is stated 
that the actual initiation events require the activities of at least 
two protein kinases, the cyclin-dependent kinase (CDK) 
Cdc28p associated with cyclin B (Clb5p or Clb6p) and the 
Cdc7p kinase associated with its regulatory subunit Dbf4p. No 
direct regulation information is provided. 

 
 
 

TABLE I 
KNOWN RELATIONS AMONG FIVE GENES FROM PATHWAYSTUDIO SOFTWARE. 

 
(a) 

 
(b) 

Figure 7. Cell cycle pathway in five genes: CDC28, CLB1, CLB2, CLB5 and 
CLB6. (a) Known interactions found by the PathwayStudio software, (b) 

Result of the proposed hybrid SI-RNN method: correctly identified relations 
use the same line as (a), reversed relations use dotted lines, and two additional 

self-regulations are indicated (CLB1 and CLB2).  

Relation Type Symbol Predicted by SI-RNN 

Expression CLB1 <--- CLB6 yes (reversed) 

Expression CLB1 <--- cdc28 no 

Expression CLB2 <--- cdc28 no 

Expression CLB1 <+-- CLB2 yes 

Regulation CLB6 ---> CLB5 yes (reversed) 

Regulation CLB6 --+> CLB2 no 

Regulation CLB1 <+-- CLB5 yes (reversed) 

MolSynthesis CLB1 --+> CLB2 yes 

Genetic Interaction CLB2 ---- cdc28 no 

Direct Regulation CLB6 --+> cdc28 yes (reversed) 
Direct Regulation CLB5 --+> cdc28 yes 
Direct Regulation CLB2 --+> cdc28 yes 
Direct Regulation CLB2 <+-- CLB5 no 
Direct Regulation CLB1 --+> cdc28 yes 



 

V. CONCLUSION 

In this paper, we explored the combined advantages of the 
nonlinear and dynamic properties of RNN, and the global 
search capabilities of swarm intelligence methods to infer 
network interactions. We evaluated the performance of the 
algorithm using data generated from a simulated five-node 
network, and time course gene expression data for five yeast 
genes. Although the algorithm yielded promising result in 
predicting the simulated network, due to the stochastic 
properties of the algorithms, not all runs identify the correct 
network structure. Our future work will focus on improving 
the rate at which the correct structure is identified. 

In inferring the GRN that govern the five genes, about half 
of the relations predicted by SI-RNN were verified by 
published literature. Three additional interactions are also 
verified in the literature to have some relations, although no 
specific direction of relation was given. However, these 
relations predicted by SI-RNN were reversed compared to the 
output of the PathwayStudio software. Two self-regulations 
were predicted by SI-RNN, but they could not be verified by 
the PathwayStudio software. 

Due to noise and insufficient time points in real gene 
expression data, we anticipate challenges in applying the 
proposed hybrid SI-RNN method to infer gene regulatory 
networks that involve large number of genes. To address these 
challenges, we plan to incorporate known gene interactions 
and genomic information into the SI-RNN algorithm. 
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Summary

A serious obstacle to successful treatment of estrogen receptor (ER)-positive human breast cancer is cell resistance to
tamoxifen (TAM) therapy. Here we show that the electrophile disulfide benzamide (DIBA), an ER zinc finger inhibitor, blocks
ligand-dependent and -independent cell growth of TAM-resistant breast cancer in vitro and in vivo. Such inhibition depends
on targeting disruption of the ER DNA-binding domain and its communication with neighboring functional domains,
facilitating ERa dissociation from its coactivator AIB1 and concomitant association with its corepressor NCoR bound to
chromatin. DIBA does not affect phosphorylation of HER2, MAPK, AKT, and AIB1, suggesting that DIBA-modified ERa

may induce a switch from agonistic to antagonistic effects of TAM on resistant breast cancer cells.
Introduction

The selective estrogen receptor modulator (SERM) tamoxifen
(TAM), which binds to the estrogen receptor a (ERa) and partially
inhibits its activity, is the most prolific therapeutic drug for the
treatment of ER-positive breast cancer (Osborne, 1998). Adju-
vant therapy studies of TAM show a 40%–50% reduction in
the odds of recurrence and reduced mortality. Unfortunately,
advanced breast cancers that initially respond well to TAM
eventually become refractory to this compound (McDonnell
and Norris, 2002; Jordan, 2004; Osborne et al., 2003; Shou
et al., 2004).

ER functions in the nucleus as a transcriptional regulator of
specific genes (Tsai and O’Malley, 1994). The structural organi-
zation of ERa consists of a ligand-independent transcription-
activation domain (AF-1 domain), a DNA-binding domain (DBD),
a ligand-binding domain (LBD), and a ligand-dependent trans-
activation domain (AF-2 domain) (Kumar et al., 1987; Ruff
CANCER CELL 10, 487–499, DECEMBER 2006 ª2006 ELSEVIER INC. DO
et al., 2000). Estrogen binding to ER alters its conformation, trig-
gers receptor dimerization, and directly facilitates binding of the
receptor complex to promoter regions of target genes, including
sites known as estrogen-responsive elements (ERE), or indi-
rectly through transcription factors such as AP-1 (Kushner
et al., 2000). The recruitment of coactivators such as AIB1 and
other proteins with acetyltransferase activity helps to unwind
the chromatin, allowing transcription to occur (Brzozowski
et al., 1997; Glass and Rosenfeld, 2000; Shang et al., 2000;
Shiau et al., 1998; Smith et al., 1997). In contrast, the ER con-
formation induced by the binding of SERMs like TAM favors
the recruitment of corepressors NCoR/SMRT and deacetylases
that inhibit transcriptional activity in TAM-sensitive breast can-
cer cells (Keeton and Brown, 2005; Kurebayashi et al., 2000;
Mak et al., 1999; Osborne et al., 2003; Shou et al., 2004). How-
ever, acquired resistance can be caused by alterations in the ER
signal transduction pathway, converting the inhibitory SERM-
ERa complex to a growth stimulatory signal (Jordan, 2004).
S I G N I F I C A N C E

Acquired resistance to antiestrogens is a major challenge to the clinical management of initially endocrine-responsive metastatic
breast cancer. We have previously found that electrophilic DIBA and benzisothiazolone derivatives inhibited TAM-sensitive breast can-
cer cells by preferentially disrupting the vulnerable zinc fingers within the ER DNA-binding domain. Here we describe how DIBA restores
the antagonistic action of TAM in resistant breast cancer cells through targeted disruption of the ER DNA-binding domain and its inter-
action with the proximal N-terminal domain to suppress ligand-dependent and -independent ER transcription and influence the recruit-
ment of cofactor to the ER. These results show that small-molecule modification of the ER zinc finger may alter coactivator/corepressor
functions, which are particularly relevant to TAM resistance.
I 10.1016/j.ccr.2006.09.015 487
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Growing evidence indicates that crosstalk between ER and
growth factor receptor signaling pathways (Brockdorff et al.,
2003; Ibrahim and Yee, 2005; Osborne et al., 2005), especially
the insulin-like growth factor receptor (IGFR) family and the epi-
dermal growth factor receptor (EGFR) family (such as cErbB2
[HER2]), is one of the mechanisms for resistance to endocrine
therapy in breast cancer (Schiff et al., 2004). In tumors with
abundant ER, AIB1, and HER2, TAM behaves as an ER agonist
and stimulates tumor growth (Osborne et al., 2005). High levels
of activated AIB1 could reduce the antagonist effects of TAM,
especially in tumors that also overexpress the HER2 receptor
that activates MAPKs. TAM resistance may also be produced
by decreased levels of the corepressor NCoR (Fujita et al.,
2003; Lavinsky et al., 1998; Osborne, 1998).

The ER-DBD contains two nonequivalent Cys4 zinc fingers
(Laity et al., 2001; Ruff et al., 2000; Schoenmakers et al., 1999;
Wikstrom et al., 1999), which function cooperatively in ER dimer-
ization and DNA binding by stabilizing the secondary and tertiary
structure of the ER-DNA complex (Maynard and Covell, 2001;
Predki and Sarkar, 1992; Schwabe et al., 1993), leading to
ligand-dependent ER transactivation and ER-mediated breast
cancer cell and tumor growth. Moreover, interdomain commu-
nication between the N-terminal AF-1 domain and DBD of
the nuclear receptors helps modulate structure- and ligand-
independent functions of receptors (Brodie and McEwan,
2005; Kumar and Thompson, 2003; Shao et al., 1998; Takimoto
et al., 2003). We have previously found that electrophilic DIBA
and benzisothiazolone derivatives produced anticancer activity
in TAM-sensitive human breast cancer cells by preferentially
disrupting the vulnerable ER zinc fingers, thus blocking ER
DNA binding and transactivation (Wang et al., 2004). Since this
anti-breast-cancer strategy targeted ER at the level of its DNA
binding, rather than the classical antagonism of estrogen bind-
ing, it is relevant to explore whether DIBA has the capacity to
inhibit the growth of TAM-resistant breast cancer cells.

In this report, we investigated how DIBA restored the antago-
nist action of TAM on breast cancer, which was dependent on
targeting disruption of the ER DNA-binding domain and its com-
munication with neighboring transcription domains. Moreover,
DIBA reduced ER association with coactivator AIB1 and en-
hanced ER association with corepressor NCoR. These findings
provided the proof of principle for a potential for DIBA applicable
to TAM-resistant breast cancer.

Results

DIBA suppresses TAM-resistant breast cancer
cell growth
First we explored whether DIBA affects estrogen-mediated
growth of TAM-resistant breast cancer cells. MCF-7/LCC2 is
a selective ER-positive, TAM-resistant cell line (Brunner et al.,
1993; Lilling et al., 2000). The specific ER ligand 17b-estradiol
(E2) stimulated [3H]thymidine incorporation in MCF-7/LCC2
and its parent MCF-7 cells, but the degree of stimulation in
MCF-7/LCC2 is significantly less than that observed in E2-
treated MCF-7 cells (Figures 1A and 1B). 4-Hydroxytamoxifen
(4-OH-TAM) significantly inhibited MCF-7 cells, with an ED50

of 0.1 mM. A low dosage of DIBA enhanced TAM sensitivity,
the ED50 deceasing 2-fold (0.05 mM) (Figure 1A). The TAM-resis-
tant cell line MCF-7/LCC2 validated with relative resistance;
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however, a small dosage of DIBA (5 mM) restored 4-OH-TAM
sensitivity, achieving over 90% inhibition of E2-driven prolifera-
tion at the lowest dosage tested of 4-OH-TAM (0.05 mM).
Similarly, DIBA inhibited cell proliferation of MCF-7/HER2-18
(Figure 1C), another TAM-resistant MCF-7 derivative engi-
neered to overexpress HER2 (Benz et al., 1993), and different
types of ER-positive and TAM-resistant breast carcinoma cell
lines including BT474 (Figure 1D), which expresses ER and is
naturally gene amplified for HER2 and AIB1 (Lin et al., 1990;
Anzick et al., 1997), and epithelial ZR-75 cells (Figure 1E)
(Hoffmann et al., 2004) in a dose-dependent manner. These
observations suggested that DIBA effectively restored the
antagonist action of TAM on growth of TAM-resistant breast
cancer cells.

In TAM-resistant cells, peptide growth factor signaling path-
ways appear to be important in modifying cell behavior, growth,
and survival (Brockdorff et al., 2003; Ibrahim and Yee, 2005).
Therefore, we examined whether DIBA impacted TAM-resistant
cell growth mediated by stimulation of exogenous peptide
growth factors. MCF-7/LCC2 cells (Figure 1F) were stimulated
by IGF-1 alone or IGF-1 plus 4-OH-TAM. TAM did not block
IGF-1-driven cell proliferation. However, adding DIBA at even
1 mM was sufficient to restore TAM inhibitory functions. These
data demonstrated that DIBA also suppressed TAM-resistant
cell growth mediated by growth factors.

Efficacy of DIBA on TAM-resistant breast cancer
tumor growth in vivo
The in vivo efficacy of the DIBA was tested using nude mice
bearing human MCF-7/LCC2 breast carcinoma xenografts.
4-OH-TAM alone did not significantly affect tumor growth.
DIBA alone resulted in a dose-dependent inhibition of tumor
growth, and a high dose (30 mg/kg) of DIBA reduced tumor vol-
ume to almost 50%. Moreover, treatment with 4-OH-TAM plus
DIBA diminished tumor to undetectable levels (Figure 2A). Histo-
pathological analysis (Figure 2B) showed a typical hypercellular
solid carcinoma invading the dermis and subcutaneum, and the
tumor cells had a high nuclear grade with frequent mitosis in the
control vehicle (upper panel) or 4-OH-TAM alone-treated mice
(middle panel). In contrast, marked reduction in tumor volume,
partial encapsulation by fibrous connective tissue, and no signif-
icant invasion into surrounding skin tissue were observed in the
mice treated with DIBA plus 4-OH-TAM (lower panel). These
tumor cells with a low nuclear grade, focal glandular differentia-
tion, and no frequent mitosis or necrosis were seen under higher
magnification. No apparent toxicity was observed in liver or
kidney in DIBA-treated mice, nor were there any significant
changes in body weight gain compared with control mice
(data not shown). Therefore, the data demonstrate that DIBA
effectively reduces the growth of MCF-7/LCC2 TAM-resistant
tumors in mice.

Synergism between DIBA and TAM
on cell-cycle progression
Using propidium iodide (PI) staining and fluorescence-activated
cell sorting (FACS) analysis, we further evaluated TAM-treated
cells within the cell cycle in the presence of DIBA (Figure 2C).
E2-treated MCF-7/LCC2 cells showed decreased cells in the
G0/G1 phase and an increased percentage of cells in the S
and G2/M phases. Cells treated with TAM had a weak inhibitory
effect on E2, increasing the percentage of cells in S/G2/M. By
CANCER CELL DECEMBER 2006
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Figure 1. DIBA is a potent inhibitor of TAM-resistant breast cancer cell proliferation

A–E: Proliferation of MCF-7 (A), MCF-7/LCC2 (B), MCF-7/HER2-18 (C), BT474 (D), or ZR-75 (E) cells was examined by [3H]thymidine incorporation assay. Starved
cells were treated with DIBA for 2 hr, stimulated with (filled bars) or without (hatched bars) 50 nM E2, incubated with increasing concentrations of 4-OH-TAM,
and analyzed 48 hr later. Data shown represent mean 6 SEM.
F: Proliferation of starved MCF-7/LCC2 cells induced by 50 nM 4-OH-TAM or 5 ng/ml IGF-1 was also examined after treatment with increasing concentrations of
DIBA. Data shown represent mean 6 SEM.
contrast, in cells cotreated with E2 plus ICI 182780, the changes
in cell-cycle status and growth induced by E2 were significantly
inhibited. In the presence of DIBA combined with TAM, cell-
cycle phase distribution induced by E2 shows a significant in-
crease (from 60.7% to 81.7%) of cells in the G0/G1 phase, a de-
crease (from 30.1% to 6.4%) in the S phase, a decrease (from
7.9% to 5.4%) in the G2/M phase, and an increase (from 1.2%
to 6.5%) in the sub-G1 phase. Also, DIBA enhanced the inhibi-
tory effect of ICI 182780 on E2-stimulated cell growth. The
FACS data further confirmed that DIBA restored the antagonist
action of TAM on cell proliferation of TAM-resistant breast can-
cer cells analyzed by the [3H]thymidine incorporation assay.
CANCER CELL DECEMBER 2006
ER is necessary for synergism between DIBA and TAM
To determine whether targeted disruption of ER is necessary for
DIBA to suppress cell growth of TAM-resistant breast cancer
cells, we used BT474, an ER-positive but TAM-resistant breast
cancer cell line, as a model system to examine the effect of de-
pletion of ER on DIBA inhibition of cell growth of TAM-resistant
cells (Figure 3A). The ER expressed in these cells was knocked
down by using ERa-siRNA. The decreased level of ER was
confirmed by western blot (Figure 3A, inset). Under identical
conditions, DIBA rendered TAM inhibition on parent ER-positive
cells, but was not able to sensitize TAM’s suppression of growth
of ER-depleted breast cancer cells. These data suggest that
489
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Figure 2. Synergism inhibition between DIBA and
TAM on in vivo tumor growth and cell-cycle pro-
gression

A: Dose-dependent effect of DIBA and 4-OH-
TAM on growth of MCF-7/LCC2 tumor in mice.
Data shown represent mean 6 SEM (n = 10
mice per group).
B: Morphology of MCF-7/LCC2 tumors treated
with vehicle (upper panel), 4-OH-TAM at
20 mg/kg/day (middle panel), or 4-OH-TAM at
20 mg/kg/day plus DIBA at 30 mg/kg (lower
panel).
C: MCF-7/LCC2 cells were synchronized by
serum starvation, pretreated with 5 mM DIBA,
and then stimulated with 50 nM E2, 50 nM TAM,
or 1 mM ICI 182780. Cell-cycle distribution was
examined by PI staining and FACS analysis. The
results represent three independent experiments
(mean 6 SEM).
inhibition of DIBA on growth of TAM-resistant breast cancer
cells depends on ER.

DIBA inhibits ER binding to DNA
To clarify whether the DIBA alters estrogen- or TAM-bound ER’s
ability to bind to its cognate ERE in TAM-resistant breast cancer
cells, we performed electrophoretic mobility shift assays (EMSA)
using nuclear extracts obtained from MCF-7/LCC2 cells (Fig-
ure 3B). E2- or 4-OH-TAM-treated cells displayed considerable
ERE DNA-binding complexes, which could be partially super-
shifted with anti-ER, but not normal rabbit serum, confirming
the specificity of these binding complexes. DIBA significantly
decreased (80%) the E2- or TAM-induced ERE DNA-binding
activity. In a similar experiment on androgen receptor (AR) in
MCF-7/LCC2 (Figure 3C), DIBA did not inhibit AR DNA-binding
activity.

Next, we examined whether DIBA affects ER binding to
probes containing the AP-1, a nontypical repeat element. Estro-
gen or TAM induced substantial AP-1 binding activity (Fig-
ure 3D). The complexes were mostly supershifted with
anti-Jun or anti-Fos antibodies. Anti-ER antibody just marginally
decreased such complexes, suggesting that a low amount of ER
may be bound to AP-1 sites under these conditions/cells. More-
over, DIBA did not display an inhibitory effect on E2- or TAM-
stimulated AP-1-binding activity, possibly because ER binding
490
to DNA is not required for its activity through the nonclassical
AP-1 pathway (Jakacka et al., 2001; Webb et al., 1999). These
data further support the specificity of DIBA influencing ER bind-
ing to DNA.

DIBA blocks occupancy of estrogen target gene
promoters by ERa

We further used chromatin immunoprecipitations (ChIP) to di-
rectly assess whether DIBA impacts ERa binding to promoters
of estrogen target genes. The presence of the specific pro-
moters in the chromatin immunoprecipitates was analyzed by
semiquantitative PCR by using specific pairs of primers span-
ning the estrogen-responsive regions in the pS2, c-Myc, and
cathepsin D (CATD) gene promoters (Figure 3E). Stimulation
with E2 and TAM dramatically increased ERa’s occupancy of
the above three promoters. DIBA remarkably decreased such
occupancy of ERa to the target gene DNA sequences in chro-
matin. By contrast, ERa did not show any interaction with the
distal promoter region (23351 to 23551) of pS2 promoter.
These results suggested DIBA directly influences the ability of
ERa to bind to ERE in the promoter of target genes.

We also used ChIPs to examine whether DIBA affects ER
binding to AP-1 site in a nontypical manner (Figure 3F). Stim-
ulation with E2 and TAM induced a dramatic increase in the
occupancy by c-fos or ERa of the AP-1 site, but not in the
CANCER CELL DECEMBER 2006



A R T I C L E
Figure 3. ER is necessary for DIBA to sensitize TAM inhibition

A: siRNA-mediated knockdown of ERa alters DIBA-mediated TAM inhibition of resistant cell growth. BT474 cells were transduced with ERa-siRNA or control
vector and incubated for 96 hr. Levels of ERa expression were examined by western blotting (inset). Proliferation of the above transfected cells treated
with DIBA and 4-OH-TAM in the presence of E2 was assayed by [3H]thymidine incorporation. Data shown represent mean 6 SEM.
B–D: DIBA inhibits E2-induced ERE (B), but not ARE (C) or AP-1 (D), DNA binding. MCF-7/LCC2 cells were treated with or without 5 mM DIBA for 2 hr, then stim-
ulated with medium (2), 50 nM E2, or 50 nM 4-OH-TAM (+) for 20 min. Nuclear extracts were incubated in the absence of antibody, aER, aAR, aJun, aFos, or
normal rabbit serum (NRS) in combination with 32P-labeled oligonucleotide probes. Arrows indicate migrational location of each nonsupershifted ER, AR or
AP-1 DNA complex.
E: The recruitment of ERa to the promoters of estrogen-responsive genes. MCF-7/LCC2 cells were treated with or without 5 mM DIBA for 2 hr, then stimulated with
E2, 4-OH-TAM, or IGF-1 for 40 min. Soluble chromatin was prepared and immunoprecipitated with anti-ERa. The final DNA extractions were amplified using pairs
of primers that cover the regions of pS2, CATD, and c-Myc gene promoters, as indicated. The distal region (approximately 23351 to 23551) of the pS2 gene
promoter was examined for the presence of ERa (bottom row).
F: The recruitment of ERa to the promoter of an estrogen-induced AP-1-dependent gene MMP-1. Soluble chromatin was immunoprecipitated with antibodies
against ERa or c-Fos. The final DNA extractions were amplified using pairs of primers that cover the AP-1 site as indicated or the non-AP-1-specific site (approx-
imately +2555) of the MMP-1 gene promoter.
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Figure 4. DIBA inhibits ERE transactivation

A–C: MCF-7/LCC2 or MCF-7 cells were transfected with a pGL3-TK-ERE luciferase, pGL3-TK-ARE luciferase, or pGL3-AP-1 luciferase construct, respectively. After
addition of 4-OH-TAM (50 nM) and/or DIBA (5 mM) for 2 hr, cells were stimulated with or without 50 nM E2 or 100 nM R1881 for 16 hr. Luciferase activity of lysed
cells was measured and normalized. Data shown represent mean 6 SEM.
D: MDA-MB-468 cells were transfected with a wild-type ER (pSG5-HE0), a series of human ER deletion mutants including pSG5-HE11, pSG5-HE19, pSG5-HE16,
pSG5-HEZF, or pSG5 control plasmids and a pGL3-TK-ERE luciferase reporter. After 24 hr, the transfected cells were treated with DIBA, E2, 4-OH-TAM, and IGF-1
for an additional 24 hr. Luciferase activity of lysed cells was measured and normalized. Data shown represent mean 6 SEM.
non-AP-1-specific site in promoter of matrix metalloproteinase
1 (MMP-1), an estrogen-induced/AP-1-dependent gene pro-
moter containing AP-1 sites but no ERE sequences (DeNardo
et al., 2005). DIBA did not affect such occupancy of c-fos or
ERa, consistent with the observation by EMSA.

DIBA inactivates ligand-dependent ERE transactivation
To determine whether DIBA might affect TAM-mediated ER
transcription in TAM-resistant breast cancer cells, we tested
transactivation of MCF-7/LCC2 (Figure 4A) and MCF-7 (Fig-
ure 4B) cells transfected with the ERE-luciferase reporter
gene. E2 activated ERE transactivation in both cell lines. TAM
alone suppressed E2-induced ERE transactivation in MCF-7
cells, whereas it increased ERE transactivation in MCF-7/
LCC2 cells. DIBA significantly reduced ERE transactivation
stimulated by 4-OH-TAM and E2 in MCF-7/LCC2 cells. By con-
trast, DIBA did not affect androgen-responsive element (ARE)
492
transactivation mediated by R1881 in both MCF-7 and MCF-
7/LCC2 cells (Figures 4A and 4B). Furthermore, DIBA did not
inhibit transactivation of AP-1-luc (Figure 4C). These data indi-
cate that DIBA selectively suppresses TAM-stimulated ER
DNA binding and subsequent ERE transactivation.

To further validate the target specificity of DIBA on ligand-
dependent ERE transcription in TAM-resistant breast cancer
cells, we cotransfected the wild-type human ERa (HE0), a series
of human ER deletion mutants (Kumar et al., 1987) including
HEZF (ER depleted of zinc finger domains, ER-DZF), HE11 (ER
depleted of DBD, ER-DDBD), HE19 (ER depleted of A/B regions
but containing DBD and AF-2 domain, ER-DA/B), HE16 (ER
depleted of D/E/F regions, ER-DD/E/F), or pSG5 control expres-
sion plasmid and the ERE-luciferase reporter gene into the
ER-negative MDA-MB-468 cells. As shown in Figure 4D, over-
expression of ERa, compared to pSG5 control, remarkably
resulted in ERE transactivation. E2 strongly activated ERE
CANCER CELL DECEMBER 2006
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transactivation, whereas TAM did not show significant inhibition
on such transactivation. Also, induction of ERE transactivation
by E2 was observed in the cells overexpressed by ERa mutant
HE19 containing completed AF-2 domain and DBD. Deletion
of zinc finger domains (HEZF) or the entire DBD (HE11) resulted
in decreasing ERE transactivation stimulated by E2, suggesting
that zinc fingers in DBD are required for ligand-dependent ERE
transactivation. DIBA significantly enhanced TAM inhibition in
the wild-type ERa- or a mutant HE19 (ER-DA/B)-overexpressing
cells, but not in HE11 (ER-DDBD)- or HEZF (ER-DZF)-overex-
pressing or control cells. Since DIBA, as a zinc finger inhibitor,
has been demonstrated to preferentially disrupt the ER DNA-
binding domain, the inhibitory effect of DIBA on ligand-induced
ERE transcription in TAM-resistant breast cancer cells may be
related to interruption of zinc finger domains within ER-DBD.

DIBA reduces ligand-independent ERE transactivation
The ligand-independent ERE transcription was also measured in
the above wild-type ER or mutant-transfected MDA-MB-468
cells. As shown in Figure 4D, in the case of the wild-type ER
(HE0)-overexpressing cells, IGF-1 strongly induced ERE trans-
activation. Deleting zinc finger domains or the entire DBD
decreased ERE transactivation stimulated by either E2 or
IGF-1, even though this mutant contains completed AF-1 and
AF-2 domains. However, induction of ERE transactivation by
IGF-1 was observed in the cells overexpressed by the ER mu-
tant HE16 containing a completed N-terminal A/B domain and
DBD, suggesting that DBD is required for both ligand-depen-
dent and -independent ERE transactivation. IGF-1’s activation
of ERE transcription is not only dependent on the AF-1 domain
itself, but is also mediated through the interaction between DBD
and AF-1 domains, consistent with previous observations that
long-range allosteric communication occurs in two separated
domains of the androgen receptor (Brodie and McEwan,
2005), glucocorticoid receptor (Kumar et al., 1999), and proges-
terone receptor (Bain et al., 2000).

Moreover, DIBA blocked ERE transactivation stimulated by
IGF-1 in the cells overexpressed by a wild-type ER or the ER mu-
tant (HE16) containing A/B/C domains. Such an inhibitory effect
of DIBA was not observed in the ER mutants HE11 (ER-DDBD)-
and HEZF (ER-DZF)-transfected cells, indicating that inhibition
of DIBA on the ‘‘steroid-independent activation’’ of ER by
growth factor signals was related to DBD-mediated intramolec-
ular communication with the AF-1 domain, which may also be in-
volved in DIBA functionally suppressing TAM-resistant breast
cancer cells.

DIBA decreases the TAM-bound ER association
with AIB1
Activated AIB1 probably translocates to nucleus (Schiff et al.,
2004), where it can interact with ER; therefore, we utilized
a coimmunoprecipitation experiment to analyze whether DIBA
impacts the ERa interaction with AIB1. Cell extracts were immu-
noprecipitated with an anti-ERa-specific antibody; immunopre-
cipitates were developed on western blots with anti-AIB1 (upper
panel) or anti-ERa (lower panel). In MCF-7/LCC2 cells (Fig-
ure 5A), the AIB1 can be coprecipitated with ERa in cells treated
with E2, 4-OH-TAM, or IGF-1, indicating that a direct protein-
protein interaction occurs between nuclear receptor ERa
and its coactivator AIB1 upon addition of E2, 4-OH-TAM, and
IGF-1. Notably, DIBA significantly decreased such ER
CANCER CELL DECEMBER 2006
interaction with AIB1. In contrast, E2, but not TAM, induced
this association between ERa and AIB1 in MCF-7 cells. These
data support that the effect of DIBA on TAM-resistant MCF-7/
LCC2 cells may be through dissociation of the coactivator
AIB1 complexes from TAM-bound ERa.

DIBA increases association of TAM-bound
ERa with NCoR
Several lines of evidence indicate that the nuclear receptor
corepressor (NCoR) complex mediates the inhibitory effects of
TAM (Keeton and Brown, 2005). Thus, we examined whether
DIBA affects NCoR modulation of the response of ERa to TAM
by using a coimmunoprecipitation experiment. Cell extracts
were immunoprecipitated with an anti-NCoR specific antibody;
immunoprecipitates were developed on western blots with anti-
ERa (Figure 5B). In control MCF-7 cells, TAM induced the asso-
ciation between ERa and NCoR while E2 did not affect it, which
may mediate the antagonistic effect of TAM on its sensitive cells.
In MCF-7/LCC2 cells, a little ERa can be coprecipitated with
NCoR, suggesting that a weak constitutive interaction occurs
between nuclear receptor ERa and NCoR, which is consistent
with the previous observations that interactions of ERa with
NCoR in vitro appear to occur regardless of the ligand state of
the receptor (Smith et al., 1997; Voss et al., 2005). Although
E2 and IGF-1 significantly decreased such interaction, TAM
alone did not increase it. DIBA remarkably increased NCoR
association with ERa in the presence of E2, IGF-1, and TAM,
suggesting that effect of DIBA on TAM-resistant MCF-7/LCC2
cells may also occur through association of the corepressor
NCoR complexes with ERa.

DIBA mediates chromatin-associated recruitment
of ERa and cofactors
To examine whether interaction between ERa and AIB1 or ERa
and NCoR is chromatin associated, we performed ChIP assays
of ER followed by the Re-ChIP analysis of either AIB1 or NCoR,
analyzing the assembly of ERa-cofactor complex components
on a well-characterized estrogen-responsive pS2 promoter
(Figure 5C). The soluble chromatin derived from MCF-7/LCC2
cells was subjected to ChIP with ERa antibodies; subsequently,
the released immune complexes were divided into two aliquots
for the Re-ChIP using AIB1 antibodies or NCoR antibodies. The
same Re-ChIP was also performed on the unbound supernatant
fractions from the primary immunoprecipitation. The ChIP assay
of ERa antibodies showed that strong binding of ERa to the
pS2 promoter was induced by E2 or TAM. DIBA significantly
decreased E2- or TAM-occupied ERa binding to the estrogen-
responsive DNA sequences in the pS2 promoter. The Re-ChIP
assay using AIB1 antibodies illustrated that E2 or TAM induced
occupancy of the pS2 promoter by ER and the coactivator AIB1.
However, the Re-ChIP assay using NCoR antibodies showed
that a marginal recruitment of the NCoR occurred in the absence
of ligand, while stimulating E2 or TAM abolished such promoter
occupancy by ERa-NCoR complexes, indicating that interac-
tions between ERa-AIB1 and between ERa-NCoR are chroma-
tin associated. After DIBA treatment, there were very low levels
of E2- or TAM-induced recruitment of ERa-AIB1 and ERa-NcoR
complexes to chromatin. Combined with the data obtained from
coimmunoprecipitation experiments (Figures 5A and 5B), these
results suggested that DIBA-induced changes in ERa associa-
tion with cofactors led to inhibition of ERa binding to DNA, in
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Figure 5. Effect of DIBA on ERa association with
AIB1 or NCoR

A and B: ERa association with cofactors assayed
by coimmunoprecipitation. MCF-7/LCC2 or
MCF-7 cells were treated with or without DIBA
for 2 hr, and then stimulated with E2, 4-OH-TAM,
or IGF-1 for 24 hr before lyses. A: Western blotting
analysis with anti-AIB1 (upper panel) or anti-ERa

(lower panel) was performed on anti-ERa immu-
noprecipitates. B: Western blotting analysis was
performed with anti-ERa (upper panel) or anti-
NCoR (lower panel) on anti-NCoR immunopre-
cipitates.
C: Recruitment of ERa and cofactors assayed by
ChIP-Re-ChIP. Soluble chromatin was immuno-
precipitated with antibodies against ERa (1� IP).
The supernatant was collected and reimmuno-
precipitated with antibodies against AIB1 or
NCoR (Supernatant Re-IP). Similar reciprocal
Re-IPs were also performed on complexes eluted
from the 1� IPs (Bound Re-IP).
D: Time course of GFP-ERa redistribution. MCF-7/
LCC2 cells were transiently transfected with
pEGFP-C2-hERa. Live cells expressing GFP-ERa

were pretreated with vehicle or DIBA for 2 hr,
followed by stimulation with 50 nM E2 or 50 nM
TAM. Time courses of GFP-ER distribution were
analyzed at 10 min intervals. Scale bar, 5 mm.
turn blocking transcription of target genes, which aided the
synergism between DIBA and TAM.

Since cofactor association can influence ERa cellular localiza-
tion, we used a transcriptionally active green fluorescent pro-
tein-ERa chimera (GFP-ERa) to examine whether DIBA affects
ERa cellular distribution. MCF-7/LCC2 cells were transiently
transfected with pEGFP-C2-hERa, and live cells expressing
GFP-ERa were analyzed at 10 min intervals under confocal laser
scanning microscopy. Without ligand, GFP-ERa was observed
only in the nucleus, excluding the nucleolus, with a diffuse dis-
tribution. Upon adding E2, GFP-ERa was dramatically redistrib-
uted from a reticular to punctate pattern within the nucleus (Fig-
ure 5D). A similar reorganization occurred with TAM. In the cells
pretreated with DIBA, neither E2 nor TAM produced the above
apparent subnuclear redistribution patterns. These results dem-
onstrated that DIBA inhibited E2- or TAM-induced ERa nuclear
distribution.

DIBA dephosphorylates ERa at serine-167,
but not serine-118
The human ERa AF-1 function is potentiated by the phosphory-
lation of serine residues of human ERa A/B domain after stimu-
lation with its ligands and nonsteroidal growth factors (EGF and
IGF-1) (Lannigan, 2003; Yamashita et al., 2005). We thus inves-
tigated whether DIBA may modulate ERa phosphorylation by
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using site-specific antiphosphoserine antibodies against ERa
at Ser-118 or Ser-167 (Figure 6A). E2, 4-OH-TAM, and IGF-1
stimulated Ser-167 phosphorylation, whereas there was no sig-
nificant difference in the level of phosphorylation of ERa at Ser-
118 in MCF-7/LCC2 cells with the above treatments. While DIBA
inhibited phosphorylation of ERa at Ser-167 induced by all stim-
uli, it affected neither Ser-118 phosphorylation nor the expres-
sion of ERa. It has been demonstrated that ERa phosphorylation
at Ser-167, but not at Ser-118, conferred DNA binding and tran-
scriptional activation (Joel et al., 1998) as well as TAM resistance
(Campbell et al., 2001). Since the structure of the N-terminal
AF-1 domain appears to be influenced by the DBD (Graham
et al., 2000), and DIBA selectively reacts with zinc finger of
ER-DBD, it seems likely that DIBA may interfere with phos-
phorylation of Ser-167 in AF-1 proximal to the DBD site through
intramolecular communication, concurring with the above
observation on the effect of DIBA in ligand-independent ERE
transactivation (Figure 4D), and may also contribute to DIBA
sensitizing the resistant cells to TAM.

DIBA does not affect expression and phosphorylation
of AIB1 and MAPK
Since ER coactivator AIB1, like ER itself, is phosphorylated and
activated by different signaling kinases, including the p42/44
MAPK, which can be activated by HER2 (Font de Mora and
CANCER CELL DECEMBER 2006



A R T I C L E
Brown, 2000), we examined whether DIBA attenuates phos-
phorylation of AIB1 in TAM-resistant cells (Figure 6B). MCF-7/
HER2-18 cell extracts were immunoprecipitated with an anti-
AIB1 specific antibody; the immunoprecipitates were developed
on western blots with anti-phosphoserine (upper panel), anti-
phosphotyrosine (middle panel), or anti-AIB1 (lower panel).
The phosphorylation of serine, but not tyrosine, of AIB1 could
be observed in cells stimulated with E2, 4-OH-TAM, and EGF.
However, DIBA did not affect such phosphorylation, indicating
that DIBA inactivates ER Ser-167 phosphorylation, but does
not affect expression and phosphorylation of AIB1, possibly
due to AIB1’s lacking a zinc finger, although the signaling from
the EGFR/HER2 family activates ER and AIB1 by the p42/44
MAPK.

We further examined whether DIBA disrupted phosphoryla-
tion of MAPK in different TAM-resistant breast cancer cell lines.
Figure 6C shows the same pattern for the phosphorylation of
MAPK as that for AIB1 in MCF-7/HER2-18 cells. Similar results

Figure 6. Effect of DIBA on expression and phosphorylation of ERa, AIB1, and
MAPK

A: MCF-7/LCC2 cells were treated with or without DIBA for 2 hr, then simu-
lated with E2, 4-OH-TAM, or IGF-1 for 20 min before lyses. Western blotting
analysis was performed with anti-phospho-ER (Ser-167 or Ser-118) or anti-ER.
B: MCF-7/HER2-18 cell lysates were immunoprecipitated with anti-AIB1. Im-
munoprecipitates were blotted with anti-phosphoserine (upper panel),
anti-phosphotyrosine (middle panel), or anti-AIB1 (lower panel).
C and D: Cell lysates of MCF-7/HER2-18 (C), MCF-7/LCC2, and BT474 (D) were
analyzed with anti-phospho-MAPK for blot (upper panel) or anti-MAPK
(lower panel) for re-blot.
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were observed in MCF-7/LCC2 and BT474 cells (Figure 6D); the
ratio of phospho-MAPK to total MAPK was not significantly
changed after the treatment with DIBA.

DIBA does not influence expression and phosphorylation
of HER2 and AKT
Since overexpression of HER2 and high levels of phosphory-
lated AKT may also contribute to TAM resistance (Gutierrez
et al., 2005; Osborne et al., 2003), we examined whether DIBA
disrupted expression and phosphorylation of HER2 and AKT
in TAM-resistant breast cancer cell lines. Compared to MCF-7
cells, MCF7/HER2-18, MCF-7/LCC2, and BT474 cells ex-
pressed a considerable level of HER2 (Figures 7A and 7B). There
are no significant changes in HER2 expression in DIBA-treated
cells. Moreover, even though TAM and IGF-1 induced remark-
able phosphorylation of HER2 (Stoica et al., 2000), DIBA did
not affect it (Figure 7B), nor did DIBA significantly affect TAM-
or IGF-1-stimulated phosphorylation of AKT (Figure 7C) in
MCF-7/LCC2 cells. These results indicate the inhibitory effect
of DIBA on TAM-resistant cell proliferation is not based on inac-
tivation of HER2, MAPK, and PI3-K/AKT.

Figure 7. Effect of DIBA on expression and phosphorylation of HER2 and AKT

A: MCF-7, MCF-7/LCC2, and MCF-7/HER2-18 cells were treated with DIBA for
2 hr and then stimulated with E2, 4-OH-TAM, or IGF-1 for 20 min. HER2 expres-
sion was analyzed by western blotting with anti-HER2.
B: MCF-7/LCC2, MCF-7/HER2-18, and BT474 cells were treated as described
in A, except that the antibodies were anti-phospho-HER2 for blot (upper
panel) or anti-HER2 for re-blot (lower panel).
C: MCF-7/LCC2 cells were treated as described in A, except that the anti-
bodies were anti-phospho-AKT for blot or anti-AKT for re-blot.
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Discussion

ER plays a major role in many cases of breast cancer and appar-
ently contributes to the growth of TAM-responsive, acquired
TAM-resistant, and de novo ER-positive resistant models (Gee
et al., 2005). By using siRNA to deplete ER of BT474, an ER-pos-
itive but TAM-resistant breast cancer cell line, we found that
DIBA rendered TAM inhibition on parent ER-positive cells, but
not on ER-depleted breast cancer cells (Figure 3A), suggesting
that DIBA function on TAM-resistant breast cancer cells is ER
dependent. We previously discovered that DIBA preferentially
disrupted the vulnerable zinc fingers of the ERa DNA-binding
domain, thus blocking ER DNA binding and transactivation
(Wang et al., 2004). In this study, we used chromatin immuno-
precipitations to directly assess ER binding to DNA on estrogen
target genes. Stimulation with E2 and TAM dramatically in-
creased ER’s occupancy of the pS2, c-Myc, and CATD gene
promoters. DIBA remarkably decreased such occupancy of
ER to the target DNA sequences in chromatin (Figure 3E). These
results suggested DIBA directly influences the ability of ER to
bind to DNA, consistent with the data obtained from EMSA
(Figure 3B). Moreover, DIBA resulted in inhibition of ligand-
dependent and -independent ERE transactivation (Figure 4D).
Therefore, targeted disruption of ER is necessary for DIBA,
a zinc finger inhibitor, to sensitize TAM inhibition of resistant
breast cancer cells through interfering with ER DNA binding
and subsequent ERE transactivation.

Nuclear receptor function is modulated by transcriptional cor-
egulators (Klinge et al., 2004; McKenna and O’Malley, 2002;
Shang et al., 2000; Shang and Brown, 2002; Tikkanen et al.,
2000). The relative level of these coactivators and corepressors
might determine the balance of agonist and antagonist proper-
ties of TAM. Here, we used coimmunoprecipitation to clarify that
DIBA decreased physical association of TAM-bound ER with its
coactivator AIB1 (Figure 5A), whereas it increased ER interac-
tion with its corepressor NCoR (Figure 5B). Moreover, ChIP ex-
periments of ERa followed by either Re-ChIP of AIB1 or NCoR
also showed that effect of DIBA on E2- or TAM-induced associ-
ation between ER and AIB1 and dissociation between ERa and
NCoR in the level of chromatin (Figure 5C), suggesting that
DIBA-mediated changes in ERa interaction with cofactors
resulted in blockage of TAM-bound ERa binding to targeted
gene promoter and transcription. Notably, the ER-cofactor
association caused by DIBA further influences TAM-bound ER
nuclear distribution (Figure 5D), indicating other functional
changes of ERa may have with chromatin on/off rates or shut-
tling. The above molecular mechanisms, by which the syner-
gism between DIBA and TAM impacted ER activity, contributed
to DIBA restoring TAM’s antagonist action on TAM-resistant
breast cancer cells (Figures 1 and 2). It may be important to
note that in our previous report, the ED50 for DIBA ejection of
zinc from recombinant ERa was 25 mM (Wang et al., 2004).
Here we show effects on disrupting ERa/AIB1 or enhancing
ERa/NCoR functions at 5-fold less, 5 mM, suggesting a range
of molecular effects on ERa functions.

Several peptide growth factors and their intracellular signaling
kinases, notably MAPK and AKT (Albanell and Baselga, 2001),
have been shown to mediate cell proliferative responses and
phosphorylate ERa on various AF-1 residues, promoting ERa
transcriptional activity in a ligand-independent manner (Martin
et al., 2000). In the case of TAM-resistant cells, we observed
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that exogenous IGF-1 stimulated phosphorylation of MAPK and
AKT as well as ERa. Although DIBA did not affect phos-
phorylation of ERa at Ser-118, MAPK, or AKT, DIBA markedly
inhibited phosphorylation of ERa at Ser-167 (Figure 6A), sug-
gesting that inhibitory effects of DIBA on a powerful functional
crosstalk engaged by the IGF-1 and ER pathways may occur
through dephosphorylating ERa at Ser-167. Thus, DIBA disrup-
tion of ER zinc fingers resulted in not only perturbing DBD-
dependent ERE transactivation (Figures 4A–4D), but also inter-
fering with intramolecular communication between DBD and
the N-terminal AF-1 domain (Figure 4D) to downregulate phos-
phorylation of Ser-167 (Figure 6A) induced by nonestrogenic
stimulation in TAM-resistant breast carcinoma cells.

Overexpression of HER2 and high levels of phosphorylated
AKT or ERK1/2 MAPK may also contribute to TAM resistance.
MCF-7 cells stably transfected with HER2 (MCF-7/HER2-18)
are de novo resistant to TAM, in contrast to their low-expressing,
responsive MCF-7 counterparts (Benz et al., 1993; Konecny
et al., 2003; Shou et al., 2004). Importantly, EGFR/HER2 signal-
ing remains dependent on the ER in MCF-7/HER2-18 cells, as
evidenced by their retained sensitivity to estrogen deprivation
(Shou et al., 2004). DIBA did not inhibit phosphorylation of
HER2, MAPK, and AKT (Figures 6 and 7) or of the coactivator
AIB1 (Figure 6B). Moreover, DIBA did not display suppression
of estrogen- or TAM-induced DNA binding (Figures 3D and 3F)
and transactivation for AP-1 (Figures 3F and 4C), a nontypical
ER-binding site. These results suggested that nongenomic ac-
tions of ERa may be not involved in the synergism between
DIBA and TAM. However, this idea can not be totally excluded;
most of the data suggest that DIBA blocks classical genomic
sites of ERa.

In conclusion, DIBA resulted not only in inhibition of ligand-de-
pendent ERa DNA binding and transcription, but also in effects
on ligand-independent ERE transactivation. Of particular impor-
tance was the synergism between DIBA and TAM in regulating re-
cruitment of cofactors to chromatin (decreasing the interaction of
ERa with AIB1 and blocking dissociation between ERa and NCoR
caused by E2 or TAM). Consequently, DIBA restores the antago-
nistic action of TAM in breast cancer cells that have acquired re-
sistance, in turn quenching target gene expression and blocking
cell growth of TAM-resistant breast cancer cells. These studies
suggest a possible new approach in modifying TAM resistance
and a potential role for small electrophilic compounds that can
modify the particularly vulnerable zinc finger in ERa.

Experimental procedures

Cell and cell culture

The electrophilic compound DIBA (NSC654077) was from the Laboratory of

Cell Biology, National Cancer Institute. The human breast carcinoma cell lines

MCF-7, ZR-75, and MDA-MB-468 were obtained from ATCC (Manassas, VA).

The MCF-7/LCC2 cell line was from Dr. R. Clarke. MCF-7/HER2-18 and

BT474 cell lines were from Dr. K. Osborne. 4-OH-TAM and 17b-Estrodial

were purchased from Sigma-Aldrich (St Louis, MO). ICI 182780 was from Toc-

ris (Ellisville, MO). In experiments with estrogen or TAM, cells were cultured in

phenol red-free and DMEM or RPMI 1640 supplemented with 5% charcoal-

dextran-stripped fetal calf serum for at least 2 days.

Cell proliferation and cell-cycle analysis

Cell proliferation was examined by measuring DNA synthesis with [3H]thymi-

dine uptake (Wang et al., 2004). Cell cycle was analyzed by propidium iodide

staining and FACS (Li et al., 2006).
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Electrophoretic mobility shift assay

Electrophoretic mobility shift assay (EMSA) was performed as described

previously (Wang et al., 2003). End-labeled [32P] oligonucleotide probes

correspond to the ERE consensus sequence: 50-GATCCGTCAGGTCAC

AGTGACCTGATGGATC-30, ARE consensus: 50-GAAGTCTGGTACAGG

GTGTTCTTTTTG-30, and AP-1 consensus: 50-CGCTTGATGAGTCAGCCG

GAA-30, respectively.

Expression plasmids

pSG5-HE0, pSG5-HE11, pSG5-HE16, or pSG5-HE19 expression plasmids

were kindly provided by Dr. P. Chambon, Universit _e Louis Pasteur, France.

pSG5-HEZF was created by site-directed mutagenesis of HE0 using the oli-

gonuecleotide: 3305: 50-CTCACTATAGGGCGAATTCCGGCCACGGACCAT

GACCATGACCC-30; 3306: 50-CATATAGTCGTTATGTCCTTGAATACTTCTC

TTGAAGAAGGCCTTGTAGCGAGTCTCCTTGGCAGATTCC-30; 3307: 50-GG

CCTTCTTCAAGAGAAGTATTCAAGGACATAACGACTATATGTACGAAGTGG

GAATGATGAAAGGTGGG-30; 3308: 50-TCAGACTGTGGCAGGGAAACCC

TCTGCCTCCCCC-30; 3309: 50-AACTCGAGCTGGATCCTCAGACTGTGGC

AGGGAAACCCTCTGCCTCCCCC-30 resulting in deletion of amino acids

185–205 and 221–245.

Transfection of SiRNA for ERa

BT474 cells were transfected with an ERa-SiRNA construct or control vector

for 96 hr according to the manufacturer’s instructions (New England BioLabs,

MA). Efficacy of the constructs was tested through western blot analysis of

the respective target ERa in transfected cells.

Transfection of luciferase reporter plasmids

FuGene-6 was used for transfection of luciferase reporter plasmids or

cotransfection of reporter gene plasmids with ER expression plasmids. Lucif-

erase assays were performed according to the manufacturer’s instructions

(BD PharMingen, San Diego, CA).

Coimmunoprecipitation and western blot analysis

Coimmunoprecipitation and western blots were performed as previously

described (Yang et al., 2000). Antibodies against ER, phospho-ER, AIB1,

phospho-AIB1, NCoR, HER2, phospho-HER2, AKT, phospho-AKT, MAPK,

phospho-MAPK, phosphotyrosine, and phosphoserine were from Upstate

Biotechnology (Lake Placid, NY).

Chromatin immunoprecipitation

The ChIP assays were based on a protocol described by Shang et al. (2000).

Cells were fixed by formaldehyde. Purified chromatin samples were immuno-

precipitated with anti-ERa antibody. DNA, isolated from immunoprecipitated

material following reversal of formaldehyde crosslinking, was amplified by

PCR. Promoter-specific primers included: pS2, 50-CCGGCCATCTCTCAC

TAT-30 (forward primer) and 50-ATCTTGGCTGAGGGATCT-30 (reverse

primer); pS2 upstream primer pair for negative control, 50-GAAGACTCCG

CACCTCAGAC-30 (forward primer) and 50-CCCTTGTGGGGAATCTGG-30

(reverse primer); c-Myc, 50-CCGCCTGCGATGATTTATAC-30 (forward

primer) and 50-AAGGTGGGGAGGAGACTCAG-30 (reverse primer); Cathep-

sin D, 50-TCCAGACATCCTCTCTGGAA-30 (forward primer), 50-GGAGCGG

AGGGTCCATTC-30 (reverse primer). MMP-1 promote, 50-TTGCAACACCAA

GTGATTCCA-30 (forward primer) and 50-CCCAGCCTCTTGCTACTCCA-30

(reverse primer); MMP-1 non-AP-1 specific site, 50-GAGTACAACTTACA

TCGTGTTGCAG-30 (forward primer) and 50-ATATGGCTTGGATGCCATCA

ATGTC-30 (forward primer).

ChIP Re-ChIP

Complexes were eluted from the primary immunoprecipitation by incubation

with 10 mM DTT at 37�C for 30 min and diluted 1:50 in buffer (1% Triton

X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl [pH 8.1]), followed by

reimmunoprecipitation with the second antibodies (Shang et al., 2000).

ChIP Re-ChIPs of supernatants were done essentially as the primary IPs.

Live microscopy

MCF-7/LCC2 cells were grown on 14 mm coverslips in 35 mm plates and

transfected with a pEGFP-C2-hERa construct using FuGene-6. Before ligand

addition, the starved cells were pretreated with DIBA for 2 hr. Images were
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acquired at 10 min intervals with a Zeiss LSM 510 confocal microscope using

a 403/1.3 NA oil immersion objective lens (Stenoien et al., 2000).

Human tumor xenografts

Human MCF-7/LCC2-derived tumor xenografts were established in female

athymic Ncr-nu/nu nude mice (National Cancer Institute, Frederick, MD) as

described previously (Brunner et al., 1993; Wang et al., 2004). Tumor volume

is calculated as a2 3 b 3 0.5, where ‘‘a’’ is the width and ‘‘b’’ is the length of

the tumor. Formalin-fixed tissue sections were embedded in paraffin, stained

with hematoxylin and eosin, and examined under a light microscope. Animal

experimentation was reviewed and approved by NCI’s Animal Research

Committee.

Acknowledgments

We are very grateful to Dr. A.T. Maynard for helpful discussion in the initial

stage, Dr. P. Chambon for kindly providing ER expression plasmids, Drs.

J. Hartley and D. Esposito for help making pSG5-HEZF constructs, Drs.

M. R. Anver, S. Lawrence and K. Rogers for help in pathology, Dr. O. M. Z.

Howard for help in animal experiments, Drs. K. Noer and W. Li for help in anal-

ysis of cell cycles, and Mr. B. Harris and E. Cho for help in image analysis.

This research was supported by the Intramural Research Program of the

Center for Cancer Research, NCI/NIH, and also funded in part with federal

funds from the NCI under contract # NO1-CO-12400.

Received: December 18, 2005
Revised: April 8, 2006
Accepted: September 28, 2006
Published: December 11, 2006

References

Albanell, J., and Baselga, J. (2001). Unraveling resistance to Trastuzumab
(Herceptin): IGF-I receptor, a new suspect. J. Natl. Cancer Inst. 93, 1830–
1832.

Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan,
X.Y., Sauter, G., Kallioniemi, O.P., Trent, J.M., and Meltzer, P.S. (1997).
AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer.
Science 277, 965–968.

Bain, D.L., Franden, M.A., McManaman, J.L., Takimoto, G.S., and Horwitz,
K.B. (2000). The N-terminal region of the human progesterone A-receptor.
Structure analysis and the influence of the DNA binding domain. J. Biol.
Chem. 275, 7313–7320.

Benz, C.C., Scott, G.K., Sarup, J.C., Johnson, R.M., Tripathy, D., Coronado,
E., Shepard, H.M., and Osborne, C.K. (1993). Estrogen-dependent, tamoxi-
fen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu.
Breast Cancer Res. Treat. 24, 85–95.

Brockdorff, B.L., Heiberg, I., and Lykkesfeldt, A.E. (2003). Resistance to
different antiestrogens is caused by different multi-factorial changes and is
associated with reduced expression of IGF-1 receptor Ialpha. Endocr. Relat.
Cancer 10, 579–590.

Brodie, J., and McEwan, I.J. (2005). Intra-domain communication between
the N-terminal and DNA-binding domains of the androgen receptor: modula-
tion of androgen response element DNA binding. J. Mol. Endocrinol. 34, 603–
615.

Brunner, N., Frandsen, T.L., Holst-Hansen, C., Bei, M., Thompson, E.W.,
Wakeling, A.E., Lippman, M.E., and Clarke, R. (1993). MCF7/LCC2: a 4-hy-
droxytamoxifen-resistant human breast cancer variant that retains sensitivity
to the steroidal antiestrogen ICI 182,780. Cancer Res. 53, 3229–3232.

Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engstrom,
O., Ohman, L., Greene, G.L., Gustafsson, J.A., and Carlquist, M. (1997). Mo-
lecular basis of agonism and antagonism in the oestrogen receptor. Nature
389, 753–758.

Campbell, R.A., Bhat-Nakshatri, P., Patel, N.M., Constantinidou, D., Ali, S.,
and Nakshatri, H. (2001). Phosphatidylinositol 3-kinase/AKT-mediated
497



A R T I C L E
activation of ERa: a new model for anti-estrogen resistance. J. Biol. Chem.
276, 9817–9824.

DeNardo, D.G., Kim, H.T., Hilsenbeck, S., Cuba, V., Tsimelzon, A., and
Brown, P.H. (2005). Global gene expression analysis of estrogen receptor
transcription factor cross talk in breast cancer: identification of estrogen-
induced/AP-1-dependent genes. Mol. Endocrinol. 19, 362–378.

Font de Mora, J., and Brown, M. (2000). AIB1 is a conduit for kinase-
mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol.
20, 5041–5047.

Fujita, T., Kobayashi, Y., Wada, O., Tateishi, Y., Kitada, L., Yamamoto, Y.,
Takashima, H., Murayama, A., Yano, T., Baba, T., et al. (2003). Full activation
of ERa activation function-1 induces proliferation of breast cancer cells.
J. Biol. Chem. 278, 26704–26714.

Gee, J.M., Robertson, J.F., Gutteridge, E., Ellis, I.O., Pinder, S.E., Rubini, M.,
and Nicholson, R.I. (2005). EGF/HER2/IGF receptor signalling and oestrogen
receptor activity in clinical breast cancer. Endocr. Relat. Cancer 1, S99–
S111.

Glass, C.K., and Rosenfeld, M.G. (2000). The coregulator exchange in tran-
scriptional functions of nuclear receptors. Genes Dev. 14, 121–141.

Graham, J.D., Bain, D.L., Richer, J.K., Jackson, T.A., Tung, L., and Horwitz,
K.B. (2000). Nuclear receptor conformation, coregulators, and tamoxifen-
resistant breast cancer. Steroids 65, 579–584.

Gutierrez, M.C., Detre, S., Johnston, S., Mohsin, S.K., Shou, J., Allred, D.C.,
Schiff, R., Osborne, C.K., and Dowsett, M. (2005). Molecular changes in
tamoxifen-resistant breast cancer: relationship between ER, HER-2, and
p38 mitogen-activated protein kinase. J. Clin. Oncol. 23, 2469–2476.

Hoffmann, J., Bohlmann, R., Heinrich, N., Hofmeister, H., Kroll, J., Kunzer, H.,
Lichtner, R.B., Nishino, Y., Parczyk, K., Sauer, G., et al. (2004). Characteriza-
tion of new ER destabilizing compounds: effects on estrogen-sensitive and
tamoxifen-resistant breast cancer. J. Natl. Cancer Inst. 96, 210–218.

Ibrahim, Y.H., and Yee, D. (2005). Insulin-like growth factor-I and breast
cancer therapy. Clin. Cancer Res. 11, 944S–950S.

Jakacka, M., Ito, M., Weiss, J., Chien, P.Y., Gehm, B.D., and Jameson, J.L.
(2001). Estrogen receptor binding to DNA is not required for its activity
through the nonclassical AP1 pathway. J. Biol. Chem. 276, 13615–13621.

Joel, P.B., Smith, J., Sturgill, T.W., Fisher, T.L., Blenis, J., and Lannigan, D.A.
(1998). pp90rsk1 regulates ER-mediated transcription through phosphoryla-
tion of Ser-167. Mol. Cell. Biol. 18, 1978–1984.

Jordan, V.C. (2004). Selective estrogen receptor modulation: concept and
consequences in cancer. Cancer Cell 5, 207–213.

Keeton, E.K., and Brown, M. (2005). Cell cycle progression stimulated by ta-
moxifen-bound estrogen receptor a and promoter-specific effects in breast
cancer cells deficient in NCoR and SMRT. Mol. Endocrinol. 19, 1543–1554.

Klinge, C.M., Jernigan, S.C., Mattingly, K.A., Risinger, K.E., and Zhang, J.
(2004). Estrogen response element-dependent regulation of transcriptional
activation of estrogen receptors alpha and beta by coactivators and core-
pressors. J. Mol. Endocrinol. 33, 387–410.

Konecny, G., Pauletti, G., Pegram, M., Untch, M., Dandekar, S., Aguilar, Z.,
Wilson, C., Rong, H.M., Bauerfeind, I., Felber, M., et al. (2003). Quantitative
association between HER-2/neu and steroid hormone receptors in hormone
receptor-positive primary breast cancer. J. Natl. Cancer Inst. 5, 142–153.

Kumar, R., and Thompson, E.B. (2003). Transactivation functions of the
N-terminal domains of nuclear hormone receptors: protein folding and coac-
tivator interactions. Mol. Endocrinol. 17, 1–10.

Kumar, V., Green, S., Stack, G., Berry, M., Jin, J.R., and Chambon, P. (1987).
Functional domains of the human estrogen receptor. Cell 51, 941–951.

Kumar, R., Baskakov, I.V., Srinivasan, G., Bolen, D.W., Lee, J.C., and
Thompson, E.B. (1999). Interdomain signaling in a two-domain fragment of
the human glucocorticoid receptor. J. Biol. Chem. 274, 24737–24741.

Kurebayashi, J., Otsuki, T., Kunisue, H., Tanaka, K., Yamamoto, S., and
Sonoo, H. (2000). Expression levels of estrogen receptor-a, estrogen recep-
tor-b, coactivators, and corepressors in breast cancer. Clin. Cancer Res. 6,
512–518.
498
Kushner, P.J., Agard, D.A., Greene, G.L., Scanlan, T.S., Shiau, A.K., Uht,
R.M., and Webb, P. (2000). Estrogen receptor pathways to AP-1. J. Steroid
Biochem. Mol. Biol. 74, 311–317.

Laity, J.H., Lee, B.M., and Wright, P.E. (2001). Zinc finger proteins: new in-
sights into structural and functional diversity. Curr. Opin. Struct. Biol. 11,
39–46.

Lannigan, D.A. (2003). Estrogen receptor phosphorylation. Steroids 68, 1–9.

Lavinsky, R.M., Jepsen, K., Heinzel, T., Torchia, J., Mullen, T.M., Schiff, R.,
Del-Rio, A.L., Ricote, M., Ngo, S., Gemsch, J., et al. (1998). Diverse signaling
pathways modulate nuclear receptor recruitment of NCoR and SMRT com-
plexes. Proc. Natl. Acad. Sci. USA 95, 2920–2925.

Li, W.Q., Jiang, Q., Aleem, E., Kaldis, P., Khaled, A.R., and Durum, S.K.
(2006). IL-7 promotes T-cell proliferation through destabilization of
p27Kip1. J. Exp. Med. 203, 573–582.

Lilling, G., Hacohen, H., Nordenberg, J., Livnat, T., Rotter, V., and Sidi, Y.
(2000). Differential sensitivity of MCF-7 and LCC2 cells, to multiple growth
inhibitory agents: possible relation to high bcl-2/bax ratio? Cancer Lett. 8,
27–34.

Lin, Y.Z., Li, S.W., and Clinton, G.M. (1990). Insulin and epidermal growth fac-
tor stimulate phosphorylation of p185HER-2 in the breast carcinoma cell line,
BT474. Mol. Cell. Endocrinol. 69, 111–119.

Mak, H.Y., Hoare, S., Henttu, P.M.S., and Parker, M.G. (1999). Molecular
determinants of the estrogen receptor-coactivator interface. Mol. Cell. Endo-
crinol. 19, 3895–3903.

Martin, M.B., Franke, T.F., Stoica, G.E., Chambon, P., Katzenellenbogen,
B.S., Stoica, B.A., McLemore, M.S., Olivo, S.E., and Stoica, A. (2000). A
role for Akt in mediating the estrogenic functions of EGF and IGF-1. Endocri-
nology 141, 4503–4511.

Maynard, A.T., and Covell, D.G. (2001). Reactivity of zinc finger cores: anal-
ysis of protein packing and electrostatic screening. J. Am. Chem. Soc. 123,
1047–1058.

McDonnell, D.P., and Norris, J.D. (2002). Connections and regulation of the
human estrogen receptor. Science 296, 1642–1644.

McKenna, N.J., and O’Malley, B.W. (2002). Minireview: nuclear receptor
coactivators—an update. Endocrinology 143, 2461–2465.

Osborne, C.K. (1998). Tamoxifen in the treatment of breast cancer. N. Engl. J.
Med. 339, 1609–1618.

Osborne, C.K., Bardou, V., Hopp, T.A., Chamness, G.C., Hilsenbeck, S.G.,
Fuqua, S.A.W., Wong, J., Allred, D.C., Clark, G.M., and Schiff, R. (2003).
Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in ta-
moxifen resistance in breast cancer. J. Natl. Cancer Inst. 95, 353–361.

Osborne, C.K., Shou, J., Massarweh, S., and Schiff, R. (2005). Crosstalk be-
tween estrogen receptor and growth factor receptor pathways as a cause for
endocrine therapy resistance in breast cancer. Clin. Cancer Res. 11, 865S–
870S.

Predki, P.F., and Sarkar, B. (1992). Effect of replacement of ‘‘zinc finger’’ zinc
on estrogen receptor DNA interactions. J. Biol. Chem. 267, 5842–5846.

Ruff, M., Gangloff, M., Wurtz, J.M., and Moras, D. (2000). Estrogen receptor
transcription and transactivation: structure-function relationship in DNA- and
ligand-binding domains of estrogen receptors. Breast Cancer Res. 2, 353–
359.

Schiff, R., Massarweh, S.A., Shou, J., Bharwani, L., Mohsin, S.K., and
Osborne, C.K. (2004). Cross-talk between ER and growth factor pathways
as a molecular target for overcoming endocrine resistance. Clin. Cancer
Res. 10, 331S–336S.

Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G.,
Rombauts, W., and Claessens, F. (1999). Differential DNA binding by the
androgen and glucocorticoid receptors involves the second Zn-finger and
a C-terminal extension of the DNA-binding domains. Biochem. J. 341,
515–521.

Schwabe, J.W.R., Chapman, L., Finch, J.T., and Rhodes, D. (1993). The
crystal structure of the estrogen receptor DNA-binding domain bound to
CANCER CELL DECEMBER 2006



A R T I C L E
DNA: how receptors discriminate between their response elements. Cell 75,
567–578.

Shang, Y., and Brown, M. (2002). Molecular determinants for the tissue spec-
ificity of SERMs. Science 295, 2465–2468.

Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A., and Brown, M. (2000). Cofactor
dynamics and sufficiency in estrogen receptor-regulated transcription. Cell
103, 843–852.

Shao, D., Rangwala, S.M., Bailey, S.T., Krakow, S.L., Reginato, M.J., and
Lazar, M.A. (1998). Interdomain communication regulating ligand binding
by PPAR-g. Nature 396, 377–380.

Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A.,
and Greene, G.L. (1998). The structural basis of estrogen receptor/coactiva-
tor recognition and the antagonism of this interaction by tamoxifen. Cell 95,
927–937.

Shou, J., Massarweh, S., Osborne, C.K., Wakeling, A.E., Ali, S., Weiss, H.,
and Schiff, R. (2004). Mechanisms of tamoxifen resistance: increased estro-
gen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer.
J. Natl. Cancer Inst. 96, 926–935.

Smith, C.L., Nawaz, Z., and O’Malley, B.W. (1997). Coactivator and core-
pressor regulation of the agonist/antagonist activity of the mixed antiestro-
gen, 4-hydroxytamoxifen. Mol. Endocrinol. 11, 657–666.

Stenoien, D.L., Mancini, M.G., Patel, K., Allegretto, E.A., Smith, C.L., and
Mancini, M.A. (2000). Subnuclear trafficking of ERa and steroid receptor
coactivator-1. Mol. Endocrinol. 14, 518–534.

Stoica, A., Saceda, M., Doraiswamy, V.L., Coleman, C., and Martin, M.B.
(2000). Regulation of ERa gene expression by EGF. J. Endocrinol. 165,
371–378.

Takimoto, G.S., Tung, L., Abdel-Hafiz, H., Abel, M.G., Sartorius, C.A., Richer,
J.K., Jacobsen, B.M., Bain, D.L., and Horwitz, K.B. (2003). Functional prop-
erties of the N-terminal region of progesterone receptors and their mechanis-
tic relationship to structure. J. Steroid Biochem. Mol. Biol. 85, 209–219.

Tikkanen, M.K., Carter, D.J., Harris, A.M., Le, H.M., Azorsa, D.O., Meltzer,
P.S., and Murdoch, F.E. (2000). Endogenously expressed ER and coactivator
CANCER CELL DECEMBER 2006
AIB1 interact in MCF-7 human breast cancer cells. Proc. Natl. Acad. Sci. USA
97, 12536–12540.

Tsai, M.J., and O’Malley, B.W. (1994). Molecular mechanisms of action of
steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63,
451–486.

Voss, T.C., Demarco, I.A., Booker, C.F., and Day, R.N. (2005). Corepressor
subnuclear organization is regulated by ER via a mechanism that requires
the DNA-binding domain. Mol. Cell. Endocrinol. 231, 33–47.

Wang, L.H., Yang, X.Y., Zhang, X.H., Mihalic, K., Xiao, W., and Farrar, W.L.
(2003). The cis decoy against the estrogen-responsive element inhibits
breast cancer cell proliferation via target suppressing c-fos not mitogen-
activated protein kinase activity. Cancer Res. 63, 2046–2051.

Wang, L.H., Yang, X.Y., Mihalic, K., Zhang, X.H., Xiao, W., Maynard, A.T., and
Farrar, W.L. (2004). Suppression of breast carcinoma by chemical modula-
tion of the vulnerable zinc finger in estrogen receptor. Nat. Med. 10, 40–47.

Webb, P., Nguyen, P., Valentine, C., Lopez, G.N., Kwok, G.R., McInerney, E.,
Katzenellenbogen, B.S., Enmark, E., Gustafsson, J.-Å., Nilsson, S., et al.
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The A4396G polymorphism in interferon regulatory factor
1 is frequently expressed in breast cancer cell lines½Q1�
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Abstract Loss or mutation of known tumor suppressor genes accounts for a small proportion of all breast
cancers. We have recently shown that interferon regulatory factor 1 (IRF1) is a putative tumor sup-
pressor gene in breast cancer. We now report that the A4396G single nucleotide polymorphism in
the IRF1 gene is more frequent in human breast cancer cell lines than in the general population
(P 5 0.01). Furthermore, A4396G is more frequently expressed in African American (black) than
in European ancestry (white) subjects (n 5 70 subjects; P < 0.001), leading to a significant differ-
ence in genotype distribution between these populations (P 5 0.002). � 2007 Elsevier Inc. All
rights reserved.

1. Introduction

The precise molecular events responsible for affecting
breast cancer risk and disease progression remain to be es-
tablished. Although an increasing number of oncogenes
have been identified, relatively few tumor suppressor genes
have been implicated in driving the development and pro-
gression of this disease. The transcription factor interferon
regulatory factor 1 gene (HUGO symbol IRF1; http://
www.gene.ucl.ac.uk/nomenclature) is lost, mutated, or rear-
ranged in several cancers including some hematopoietic [1]
and gastric cancers [2]. Several single nucleotide polymor-
phisms have also been reported [3,4]. We have previously
shown that IRF1 is associated with acquired estrogen-
independence [5] and with antiestrogen resistance in breast
cancer [6]; others have shown its importance in normal
mammary epithelial cells [7] and in other breast cancer
models [8]. The IRF1 protein is readily detected in breast
tumors [9,10] and is expressed in a pattern consistent with
a putative gene network that regulates endocrine respon-
siveness in breast cancer cells [10,11].

We have shown that IRF1 acts as a breast cancer sup-
pressor gene, repressing both the growth of human breast

cancer cell xenografts in athymic nude mice and cell prolif-
eration in vitro [12]. These tumor suppressor and antiproli-
ferative activities are associated with the ability of IRF1 to
modulate apoptosis through regulation of a caspase cascade
[7,12]. Loss of heterozygosity at 5q31.1, which includes the
IRF1 gene locus, has recently been reported in both spo-
radic and inherited breast cancers [13,14].

We now report that a polymorphism in the IRF1 gene, an
A/G single nucleotide polymorphism at base pair 4396
(A4396G), is detected at a higher frequency in human
breast cancer cell lines than in the normal population and
is more frequently expressed in African Americans than
in European-ancestry whites.

2. Materials and methods

MCF-7 cells were originally obtained from Dr. Marvin
Rich (Michigan Cancer Foundation, Detroit, MI). T47D,
ZR-75-1, MDA-MB-231, MDA-MB-435, and A1N4 cells
were obtained from the Tissue Culture Shared Resource
of the Georgetown University Lombardi Comprehensive
Cancer Center. All other cell lines were obtained from
the American Type Culture Collection (ATCC, Manassas,
VA). Unless otherwise indicated, cell lines were routinely
grown in improved minimal essential medium (IMEM; Bi-
ofluids, Rockville, MD) with phenol red and supplemented
with 5% fetal bovine serum (Gibco Life Technologiese
Invitrogen, Carlsbad, CA). A1N4 cells were grown in
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IMEM supplemented with 0.5% fetal calf serum, 0.5 mg/
mL hydrocortisone, 5 mg/mL insulin, and 10 ng/mL epider-
mal growth factor [15]. All cells were maintained in a hu-
midified incubator at 37�C in an atmosphere containing
95% air, 5% CO2.

Restriction fragment length polymorphism (RFLP) anal-
ysis was performed on a fragment of the IRF1 gene ampli-
fied from genomic DNA by polymerase chain reaction
(PCR). For DNA extraction, cells were plated in T-75cm2

plastic tissue culture flasks at a density of 1 � 106 cells/
flask and grown for 24 hours prior to DNA isolation.
DNA was extracted from proliferating subconfluent cells
using the TRIzol reagent½Q2� (Life Technologies, Gaithersburg,
MD) and quantified by comparing the optical density ratios
(OD260/OD280) obtained spectrophotometrically using
a Beckman DU640 spectrophotometer (Beckman, Fuller-
ton, CA). For RFLP analysis, IRF1 specific primers were
used to amplify a portion of exon 7 in the IRF1 gene from
genomic DNA. The IRF1 primers were bp-4358 (sense),
50-TTGACCTGTGGCTTCTGCTGT-30, and bp-4639 (anti-
sense), 50-GTCGCTTGCCTCCCCCTATG-30 from Gen-
Bank (accession no. L05072; http://www.ncbi.nlm.nih.
gov); 100 ng of the appropriate genomic DNA was used
as template. PCR conditions were 1 cycle for 3 min at
94�C, 35 cycles of 1 min at 94�C and 1 min at 59�C, and
1 min 45 sec at 72�C. Purified PCR product was digested
with the restriction endonuclease NlaIII (New England
BioLabs, Beverly, MA), size fractionated on a 20% Trise
boric acideEDTA polyacrylamide gel, and stained with
ethidium bromide. NlaIII is site-specific (recognition se-
quence: CATG) and will not cleave variant DNA at the
4396 base pair. Thus, two bands correspond to a homo-
zygote A/G polymorphism at 4396, three bands signify
a homozygous wild type, and four bands indicate
a heterozygote.

For statistical analyses, the proportions of genotypes and
allele frequencies in cell lines and human subjects were
compared by c2 analysis. Unless otherwise indicated, all
probabilities are two-tailed; the conventional assessment
of P ! 0.05 was applied to establish statistical significance.

3. Results and discussion

IRF1 is implicated as a tumor suppressor gene in breast
cancer [12] and in several hematopoietic [1] and gastric
cancers [2]. We found the A4396G polymorphism in the
IRF1 gene when sequencing PCR products from MCF-7
human breast cancer cells. Using RFLP analysis, we mea-
sured the prevalence of the polymorphism in breast cancer
cell lines (Table 1; n 5 17), other cancer cell lines (Table 2;
n 5 40), normal cell lines (Tables 1 and 2; n 5 5), and in
DNA from normal volunteers obtained from the Coriell
DNA repository (Coriell Institute for Medical Resarch,
Camden, NJ): 34 African Americans and 36 whites (n 5

70) (Table 3). Allele frequencies are significantly different

between African Americans (c2 test, P 5 0.004; higher fre-
quency of G vs. A) and whites (c2 test, P ! 0.001; higher
frequency of A vs. G). The distribution of genotypes (allelic
frequency of A was 0.37 in African Americans and 0.65 in
whites) was significantly different between African Ameri-
cans and whites (c2 test, P 5 0.002).

We compared allele frequencies among the breast cancer
cell lines for which we could identify ethnic origin as white
from either the ATCC (Manassas, VA) or the original
publications (Table 1) with the white population data from
Table 3. We excluded MDA-MB-157 cells obtained from
an African American woman, the MCF-7 cells because
we found two different genotypes, and NIH/ADR-RES
cells because the precise origin of these cells is uncertain
[16]. We excluded MDA435/LCC6 cells [17]; the breast
origin of the parental MDA-MB-435 cell line has been
questioned [18], and in a recent study we could not show
similarity in the transcriptomes of MDA-MB-435 cells
and a series of breast cancer biopsies, whereas other breast
cancer cell lines show significant similarities with these
breast tumors [19]. These cells now appear to be defini-
tively of melanoma origin [20]. We also excluded two nor-
mal mammary epithelial cell lines, A1N4 [21] and
MCF10A [22]. The remaining breast cancer cell lines
(n 5 11) have a genotype proportion significantly different
from that of the white population (c2 test; P 5 0.01); geno-
type frequencies in the breast cancer cell lines are not
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Table 1

A4396G polymorphism in breast cancer and normal mammary epithelial

cell lines½Q5�
Cell line bp 4396 Ethnicitya

MCF7 G/G Eur

MCF7 A/G Eur

NIH/ADR-RES A/A unknown

ZR-75-1 A/A Eur

ML-20 (MCF-7 transfected with syk) A/G Eur

MKL-4 (MCF-7 transfected with FGF4) A/G Eur

BRC-230 A/A unknown

BT-474 A/G Eur

BT-483 A/A Eur

BT-549 G/G Eur

DU4475 A/A Eur

Hs 578T A/A Eur

MDA-MB-134-VI A/A Eur

MDA-MB-157 G/G AA

MDA-MB-231 G/G Eur

MDA-MB-415 A/A Eur

MDA-MB-330 G/G Eur

MDA-MB-453 A/A Eur

MDA435/LCC6 G/G unknown

Normal mammary cell lines

A1N4 A/A

MCF10A A/A

Abbreviations: AA, African American (black); Eur, European ancestry

(white).
a Ethnicity data were obtained from the original publications or as

described by ATCC.
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significantly different from those in a random sample of
other cancer cell lines (Table 2; n 5 40). Of the excluded
breast cancer cell lines, only the NIH/ADR-RES genotype
is wild type, and the outcome is unaffected when all the
cancer cell lines from Table 2 are compared.

The greater prevalence of A4396G in breast cancer cell
lines derived from whites, compared with that in the normal
white population, suggests an association with breast cancer.
The genotype proportions in breast cancer cells are also seen
in other cancer cell lines, further suggesting an association of
A4396G with cancer. Nonetheless, we cannot fully exclude
the possibility that this is a cell culture artifact. Our identifi-
cation of two MCF-7 genotypes (A/G; G/G) suggests genetic
drift in vitro, which may contribute to the phenotypic diver-
sity of this cell line. Ongoing studies are now examining
the prevalence of this polymorphism in breast tumors.

How the A4396G polymorphism contributes to the tumor
suppressor role of IRF1 in breast cancer is unknown. Noguchi
et al. [4] first identified the A4396G polymorphism in periph-
eral blood lymphocytes from several atopic and asthmatic
families of Japanese descent, although neither allele was sig-
nificantly associated with transmission to asthmatic children.
The switch in nucleotide use does not change the amino acid
sequence of the translated protein. Seven splice variants have
been previously reported in the IRF1 gene [23]; alternative
splicing in exons 7, 8, and 9 negatively regulates IRF1 in cer-
vical cancer, and this splicing likely affects its tumor suppres-
sor activities [24]. It is not known if A4396G is an active
splice site but in silico analysis using GeneSplicer [25] sug-
gests that this polymorphism is unlikely to generate a novel
splice site. In contrast, the A4396G polymorphism may af-
fect putative transcription factor binding at internal sites
[26]. Compared with the wild type allele, A4396G loses bind-
ing sites for microphthalmia transcription factor (MITF/
TFE3), paraxis (TCF15), neurogenin 1 and 3, and Myc-
Max heterodimers; these sites are replaced with a single hairy
and enhancer of split 1 (HES1) site. In melanoma, MITF tran-
scriptionally activates the tumor suppressor and cell cycle in-
hibitor INK4A, leading to cell cycle arrest [27]. Whether
MITF or any of these other transcription factors differentially
regulates the wild type versus A4396G IRF1 allele is under
investigation, because altered regulation of IRF1 tumor sup-
pressor activities could significantly affect breast cancer risk.

Of interest is the significantly higher prevalence of
A4396G in African Americans. African American women
are diagnosed at an earlier age [28] and present with a high-
er stage at diagnosis [29]. Although the incidence of breast
cancer is lower [30], except for very young women [29],
survival also is lower for African American than for non-
Hispanic white and Hispanic women [31]. The increased
prevalence of the A4396G polymorphism, particularly if
it affects IRF1-mediated tumor suppression, could contrib-
ute to these observations in African American women, but
this remains to be established.
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Table 2

A4396G polymorphism in cancer and other cell lines not of mammary

origin½Q6�
Cell line Tissue of origin bp 4396

CCF STTG1 Astrocytoma A/A

HeLa Cervical adenocarcinoma A/G

LS 147T Colorectal adenocarcinoma A/G

LS 180 Colon adenocarcinoma A/G

CaCo-2 Colon adenocarcinoma A/A

HCT-116 Colon adenocarcinoma A/A

HCT-15 Colorectal adenocarcinoma G/G

HEC-1-A Endometrial adenocarcinoma A/A

A-431 Epidermoid squamous carcinoma A/A

Hs 913T Fibrosarcoma A/G

KATO III Gastric adenocarcinoma A/G

A-172 Glioblastoma A/A

HepG2 Hepatocellular carcinoma A/A

K-562 Leukemia (chronic myeloid blast crisis) A/A

Jurkat Leukemia (T-Lymphocyte) G/G

IMR-90 Lung fibroblasts (normal) A/G

A-549 Lung (bronchoalveolar carcinoma) A/A

Calu-3 Lung adenocarcinoma A/A

NCI-H209 Lung adenocarcinoma A/A

NCI-H345 Lung carcinoma A/A

NCI-H520 Lung squamous cells carcinoma G/G

MOLT-4 Lymphoblastic leukemia (T-cell) A/A

MOLT-3 Lymphoblastic leukemia (T-cell) A/A

CCRF-CEM Lymphoblastic leukemia (T-cell) A/A

CCRF-HSB-2 Lymphoblastic leukemia (T-cell) A/A

CCRF-SB Lymphoblastic leukemia (T-cell) A/A

Daudi Lymphoma (Burkitt) G/G

NHL Lymphoma (Non-Hodgkin) A/G

IMR-32 Neuroblastoma A/G

BE (2) M17 Neuroblastoma G/G

Hs 683 Neuroglioma A/G

CaOV-3 Ovarian adenocarcinoma G/G

COLO-357 Pancreatic adenocarcinoma G/G

FaDu Pharyngeal carcinoma A/A

BeWo Choriocarcinoma A/G

JAR Choriocarcinoma A/G

JEG-3 Choriocarcinoma A/G

HL-60 Promyelocytic leukemia A/A

LNCaP Prostate adenocarcinoma G/G

DU 145 Prostate carcinoma A/A

A-204 Rhabdomyosarcoma A/A

A-673 Rhabdomyosarcoma G/G

Hs-27 Foreskin fibroblast (normal) A/A

Hs-68 Foreskin fibroblast (normal) A/G

Table 3

A4396G polymorphism in healthy human volunteers½Q7�
Ethnicity A/A A/G G/G

African American (n 5 34) 3 19 12

European ancestry (n 5 36) 14 19 3
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Abstract
Background: The poly Q polymorphism in AIB1 (amplified in breast cancer) gene is usually
assessed by fragment length analysis which does not reveal the actual sequence variation. The
purpose of this study is to investigate the sequence variation of poly Q encoding region in breast
cancer cell lines at single molecule level, and to determine if the sequence variation is related to
AIB1 gene amplification.

Methods: The polymorphic poly Q encoding region of AIB1 gene was investigated at the single
molecule level by PCR cloning/sequencing. The amplification of AIB1 gene in various breast cancer
cell lines were studied by real-time quantitative PCR.

Results: Significant amplifications (5–23 folds) of AIB1 gene were found in 2 out of 9 (22%) ER
positive cell lines (in BT-474 and MCF-7 but not in BT-20, ZR-75-1, T47D, BT483, MDA-MB-361,
MDA-MB-468 and MDA-MB-330). The AIB1 gene was not amplified in any of the ER negative cell
lines. Different passages of MCF-7 cell lines and their derivatives maintained the feature of AIB1
amplification. When the cells were selected for hormone independence (LCC1) and resistance to
4-hydroxy tamoxifen (4-OH TAM) (LCC2 and R27), ICI 182,780 (LCC9) or 4-OH TAM, KEO and
LY 117018 (LY-2), AIB1 copy number decreased but still remained highly amplified. Sequencing
analysis of poly Q encoding region of AIB1 gene did not reveal specific patterns that could be
correlated with AIB1 gene amplification. However, about 72% of the breast cancer cell lines had at
least one under represented (<20%) extra poly Q encoding sequence patterns that were derived
from the original allele, presumably due to somatic instability. Although all MCF-7 cells and their
variants had the same predominant poly Q encoding sequence pattern of
(CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA of the original cell line, a number of
altered poly Q encoding sequences were found in the derivatives of MCF-7 cell lines.

Conclusion: These data suggest that poly Q encoding region of AIB1 gene is somatic unstable in
breast cancer cell lines. The instability and the sequence characteristics, however, do not appear
to be associated with the level of the gene amplification.
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Background
While predisposition to breast cancer is largely due to
mutations in high penetrance tumor suppressor genes
such as BRCA1 and BRCA2, progression of cancer is the
result of accumulation of genetic alterations. These altera-
tions include gene amplifications, microsatellite instabili-
ties, loss of heterozygosity, and mutations in genes that
play important roles in signal transduction or transcrip-
tion activation pathways leading to tumorigenesis. Gene
amplification in breast cancer was found in several chro-
mosomal locations [1-4]. Among them, ErbB2 (or HER-2/
neu) amplification strongly correlates with steroid recep-
tor negative tumors [5,6], and amplification of
AIB1(amplified in breast cancer 1) gene is prevalent in
estrogen receptor (ER) positive tumors [7,8]. The AIB1
gene is a member of the SRC-1 (steroid receptor coactiva-
tor) family and is also known as RAC3, TRAM-1 or ACTR
[7,9,10]. It is located at chromosome 20q12 region and
encodes a protein of 1420 amino acids containing bHLH-
PAS dimerization domain, a hormone receptor interac-
tion domain, a CBP interaction domain, and histone
acetyltransferase domain [11]. The amplifications and
overexpression of AIB1 gene were found to be a common
phenomenon in breast cancer cell lines and primary
breast cancer tissues [12-15]. Since AIB1 bridges between
nuclear receptors and other coactivators or the transcrip-
tional machinery, its amplification and overexpression
may play crucial roles in the development of breast cancer
and may potentially have influence on the hormonal pre-
vention and treatment for breast cancer.

Toward the C-terminus of AIB1, there is a stretch of poly-
glutamine residues that are encoded by polymorphic CAG
repeats. The expansion of CAG repeats in poly Q contain-
ing proteins underlies a number of neurodegenerative dis-
eases [16,17]. Large expansion of triplet repeats in AIB1
gene does not occur, presumably due to the frequent
interruption by CAA [18]. However somatic instability by
nucleotide substitution such as small insertion or deletion
does occur [18]. In androgen receptor (AR), the length of
the CAG repeats inversely correlates with its transcrip-
tional activity [19,20]. Meanwhile a shorter CAG repeat in
AR is associated with a higher risk of an aggressive prostate
cancer phenotype characterized by extraprostatic exten-
sion, distant metastases, or poor histological grade [21].
In the case of AIB1, it is not clear if the polymorphic
length of poly Q affects the transactivation activity of
AIB1. AIB1 interacts with ER in a ligand-dependent man-
ner [7]. It also interacts with non-steroid nuclear receptors
and transcription co-integrators such as thyroid and retin-
oid receptors and CBP-dependent transcription com-
plexes [22,23]. Thus, amplification of AIB1 gene impacts
on both estrogen dependent and estrogen independent
mechanisms leading to tumorigenesis [24-26]. Although
antiestrogens are the most common type of endocrine

therapy in breast cancer treatment, acquired resistance can
be a major problem in clinical management of initially
responsive breast cancer patients.

Understanding of the quantitative and qualitative changes
of AIB1 gene in estrogen-independent and antiestrogen
resistant breast cancer cell lines may help in the selection
of steroid or non-steroid antiestrogen therapies. Evalua-
tion of AIB1 gene amplification in previous reports is per-
formed by FISH or Southern blot analysis [2,4,7]. In this
report, we use the real-time quantitative PCR (Q-PCR)
technique to assess the amplification of AIB1 gene in var-
ious breast cancer cell lines and primary breast tumors.
We also analyze the sequence characteristics and instabil-
ity of the polymorphic poly Q encoding region at the sin-
gle molecule level by cloning and sequencing of the DNA
region containing CAG repeats.

Methods
Samples and DNA preparation
Primary breast tumor specimens with matching normal
breast tissue samples were obtained from Fu Jen Catholic
University, and Cardinal Tien Hospital, Taiwan, after sur-
gical removal of the tumor according to the IRB approved
protocol. The ER positive breast cancer cell lines were
obtained from Georgetown University Lombardi Com-
prehensive Cancer Center Tissue Culture shared resource
and American Type Cell Culture. A total of 25 cancer and
4 non-cancer breast tissue cell lines were studied. MCF-7
variants include different passages, MCF-7 p19, MCF-7
p72 and MCF-7 derivatives: LCC1 (selected for growth in
vitro without estrogens) [27], LCC2 (selected from LCC1
by treatment with non-steroid antiestrogen 4-OH TAM)
[28], LCC9 (selected from LCC1 by treatment with steroid
antiestrogen ICI 182,780) [29], LY-2 (resistant to 4-OH
TAM, KEO and LY 117018) and R27 (resistant to 4-OH
TAM). AK-47 is derived from parental ER positive cell line
ZR-75-1 with the loss of expression of ER. LCC6 is a more
aggressive form of MDA-MB-435 [30]. A1N4 is a normal
breast cell line that is ER negative. DNA from tissues,
blood and cell cultures was extracted by salting out
method [31].

Preparation of standard DNA for quantitative PCR
A region of 439 bp from exon 5 of AIB1 gene was ampli-
fied with the forward primer; 5'-CAAGCGATCAAATGAG-
GGTAG-3' and the reverse primer; 5'-
CATTGTTTCATATCTCTGGCG-3'. A fragment of 85 bp
from 3' untranslated region of β2-microglobulin gene (β2-
M) was amplified with the forward primer; 5'-TGCT-
GTCTCCATGTTTGATGTATCT-3' and the reverse primer;
5'-TCTCTGCTCCCCACCTCTAAGT-3' [32-34]. These PCR
products were cloned into the pCR 2.1-TOPO vector (Inv-
itrogen). The plasmid DNA was isolated and quantified
using the DU640 Spectrophotometer (Beckman, Fuller-
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ton, CA, USA). The copy numbers were calculated from
absorbance at 260 nm and based on the molecular weight
of the resulting plasmid. The plasmid DNAs were serially
diluted over four logs to establish the standard curve giv-
ing a range from 400,000 to 40 copies/µl. In additional set
of experiments the standard curve was constructed using
genomic DNA prepared as a pool of equal amounts of
blood DNA from 7 control individuals with normal AIB1
copy number. 'Normal' genomic DNA (100 ng/µl) was
diluted in water over four logs. Since 1 ng of genomic
DNA contains approximately 330 copies of a single copy
gene, five standards used range from 33000 to 3.3 copies/
µl.

Real-time quantitative PCR (RT Q-PCR)
In real-time Q-PCR analysis, the primers used were 5'-
GAGTTTCCTGGACAAATGAG-3' (forward) and 5'-CATT-
GTTTCATATCTCTGGCG-3' (reverse) for AIB1 gene (Exon
5), and the same primers as used for standard DNA prep-
aration for β2-M gene, yielding 134 bp and 85 bp PCR
products, respectively. The TaqMan probes were FAM-5'
GCCGTATGTTGATGAAAACACCACA 3'-TAMRA and VIC-
5' TTGCTCCACAGGTAGCTCTAGGAGG 3'-TAMRA, for
AIB1 and β2-M gene respectively, each labeled with FAM
or VIC (reporter dye) at the 5' end and TAMRA (quencher
dye) at the 3' end. Each 10 µl real time Q-PCR reaction
mixture contained 1 × TaqMan Universal PCR Master Mix
(Applied Biosystems, Foster City, CA), 10 ng of genomic
DNA, 0.3 µM of each primer, and 0.1 µM probe. The actin
gene was also used as a reference. However, since the actin
gene has multiple homologous copies, the data presented
here were referenced to β2-M gene. The amplification was
carried out according to the conditions suggested by the
manufacturer (initial denaturation at 95°C for 10 min
and 40 cycles of 95°C for 15 s and 60°C for 1 min) using
an ABI Prism 7700 Sequence Detection System (Applied
Biosystems, Foster City, CA). Each measurement was per-
formed in triplicate and the threshold cycle numbers (CT)
were measured. The copy number was generated from the
CT value and standard curve according to previously
described procedures [32-34].

Cloning and sequencing
The poly Q containing fragment was amplified by the for-
ward primer F: 5' GTCTTATACCTGGTGTATTG 3' and the
reverse primer R: 5' CTGGGGGAAGCAGTCACATTAG 3',
yielding a PCR product of 314 bp. The high fidelity ampli-
fication was carried out in a 30 µl reaction mixture con-
taining 10 ng of genomic DNA, 0.2 µM of each primer, 1
× HF 2 PCR buffer, dNTPs, and Advantage-HF 2 polymer-
ase according to the manufacturer's recommendation
(Clontech Laboratories, Palo Alto, CA). After 1 min of ini-
tial denaturation at 94°C, the DNA was amplified by 30
cycles of 45 s at 95°C, 45 s at 55°C and 45 s at 72°C, fol-
lowed by a final extension at 72°C for 5 min. The PCR

products were purified and cloned into pCR2.1-TOPO
(Invitrogen) vector according to the manufacturer's proto-
col. At least 8 clones from each sample were picked for
sequencing using BigDye sequencing kit and analyzed on
an ABI 377 DNA Sequencer (Applied Biosystems, Foster
City, CA). Two primers, F and F2 (5' AGCAGGGTTTTCT-
TAATGCTC 3') were used for sequencing and loading of
reactions onto alternate lanes for easy tracking. The
sequence results were analyzed using sequence analysis
software version 3.4.

Results
Amplification of AIB1 gene
Real-time Q-PCR analysis allows the measurement of
actual copy number of AIB1 gene using a single copy β2-
microglobulin gene as a reference. From the threshold cycle
number and the standard curve, the ratio of the copy
number of AIB1 gene to that of β2-M gene can be calcu-
lated. This ratio can be used as a measure of the amplifica-
tion of the AIB1 gene. The average copy number ratio of
the AIB1/β2-M in the blood samples from 48 age matched
control individuals is determined to be 1.16 ± 0.38. An
AIB1/β2-M ratio above 2 SD of the mean (1.16 + 2 × 0.38
= 1.92) is defined as truly amplified. In addition, all meas-
urements were repeated using a pool of normal genomic
DNAs for standard curve construction. The results
obtained using both methods were practically identical.

We first evaluate the amplification of AIB1 gene in 26 pri-
mary breast tumors (13 ER positive and 13 ER negative)
and corresponding surrounding normal breast tissue sam-
ples. AIB1 gene was found to be amplified in 1 ER positive
tumor sample that constitutes 3.8% of total or 7.6% of ER
positive tumors. This result is consistent with previous
report [3,7,13].

As shown in Table 1, 9 out of 29 cell lines had elevated
AIB1 at 2SD above the mean. All of them were ER positive.
AIB1 gene was not amplified in 7 ER positive cell lines:
BT20, ZR-75-1, T47D, BT483, MDA-MB-361, MDA-MB-
468 and MDA-MB-330. None of the 13 ER negative cell
lines showed significant AIB1 amplification. Some cell
lines are derivatives of others. For example, AK-47 is
derived from ER positive ZR-75-1 cell line. In AK-47 cells,
loss of ER expression did not have any effect on AIB1 copy
number. The amplification of AIB1 gene in different pas-
sages of ER positive MCF-7 cell lines remains at high levels
of 18–23 fold of control. Loss of estrogen dependence in
LCC1 is accompanied by moderate decrease in AIB1 gene
amplification (13.5 fold in LCC1 versus 22.2 fold in MCF-
7). The level of AIB1 gene amplification was reduced to
14.6 fold when the estrogen-independent cells became
resistant to antiestrogen 4-OH TAM treatment (LCC2).
Similar decrease in amplification (15.6 fold of control) of
AIB1 gene was observed in estrogen-independent cell line
Page 3 of 8
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that has gained antiestrogen resistance to both non-ster-
oid, 4-OH TAM, and steroid, ICI 182,780 antiestrogens
(LCC9) (Table 1).

Somatic instability of poly Q encoding region of AIB1 gene 
in breast cancer cell lines
The polymorphic poly Q encoding region of AIB1 con-
tains CAG repeat that is frequently interrupted by CAA's.
The poly Q region is part of the histone acetyltransferase
domain. It is also where the recruitment and interactions
with other components of the transcription activator com-
plex takes place. In order to investigate if qualitative alter-
ation in this region accompanied the quantitative change
of AIB1 gene in breast cancer cell lines, we cloned and
sequenced the poly Q encoding region of the gene. The

cloning/sequencing technique resolved the heterogene-
ous poly Q encoding sequences into distinct sequences,
thus allowing the analysis at the single molecule level. At
least 8 clones from each cell line were selected and
sequenced. Theoretically, there should be only 2 distinct
sequence patterns if the cell line is heterozygous for AIB1
allele and one distinct sequence pattern if it is
homozygous. However, 18/25 (72%) (data partially
shown in Table 2) of the cell lines contain at least one
poly Q encoding sequence pattern that represents less
than 20% of the sequenced clones of the cell line. These
results suggest that the under-represented sequences prob-
ably arise from the parental sequence by somatic muta-
tion. Indeed these rare sequences differ from their
parental sequence by one base pair substitution (CAG to
CAA) or by insertion or deletion of CAGs. The high degree
(72% of the cell lines) of somatic instability is probably
characteristic for cancer cell lines since it only occurs in
less than 5% (2/43) of the normal controls. We analyzed
normal A1N4 cell line at two different times. The first
time, ten clones of A1N4 cell line were sequenced. Pattern
2 (Table 2), (CAG)6CAA(CAG)9(CAACAG)3(CAACAG-
CAG)2CAA, was found in 4 clones, and pattern 17,
(CAG)4CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA was
found in 6 clones. The second time, 31 clones were
sequenced. Sixteen had pattern 2 and 15 had pattern 17.
There was no occurrence of "extra" poly Q encoding
sequence. These results suggest that the occurrence of rare
sequences is not due to cloning/PCR artifact.

Association between poly Q length or its specific encoding
sequence with AIB1 amplification was not recognized
(Table 2). Somatic instability occurred in all variants of
MCF-7 cell line, although they all maintain the parental
allele as the predominant coding sequences (pattern 1).
Two new sequences arise by insertion of 2 and 3 CAGs in
passage 19. Another two new sequences occur in passage
72 by deletion of 1 and 2 CAG repeats. Similar somatic
mutations occur in cell lines LCC1, LCC2, LCC9, LY-2 and
R27. These mutations seem to occur randomly and inde-
pendently in each cell line. There is not any single
sequence that occurs more frequently than others, except
pattern 5, which occurs 3 times by losing 1 CAG directly
from the parental sequence.

AK47 was derived from ZR-75-1 by losing its ER activity.
During the establishment of the cell line, additional
somatic mutations occurred in the polyglutamine region
(patterns 11 and 16). The poly Q encoding sequence of
AIB1 gene seems to be quite unstable in MDA-MB435 cell
line. It has 4 distinct poly Q encoding sequence patterns
with pattern 9 as the predominant one. Its variant LCC6
had a total of 7 different sequence patterns. These data are
consistent with the genomic instability that is characteris-
tic for cancer cells. Although poly Q encoding sequence

Table 1: The ER status, AIB1 amplification, and poly Q encoding 
sequences in breast cell lines

Cell line a ER status AIB1 copy number 
ratio 

(tumor/normal)

Number of s
equence 
patterns

MCF-10A - 1.1 3
MCF-10A neo - 1.3 3
A1N4b - 2.0 2
AK-47 - 1.4 3
MDA-MB435 - 1.3 4
LCC6 - 2.0 7
MDA-MB157 - 1.1 6
MDA-MB134V - 1.4 2
MDA-MB231N - 1.2 2
HBL100 - 1.2 1
ZR-75-30 - 1.7 1
HS 578T - 1.9 2
HS 578BST - 1.1 2
MCF7 + 22.2 1
MCF-7 P19 + 18.7 3
MCF-7 P72 + 22.8 3
LY-2 + 19.9 2
R27 + 19.4 2
LCC1 + 13.5 3
LCC2 + 14.6 2
LCC9 + 15.6 2
BT474 + 4.9 2
BT-483 + 1.9 4
BT20 + 1.7 2
MDA-MB468 + 1.7 2
ZR-75-1 + 1.5 2
MDA-MB361 + 1.3 2
T47D + 1.0 5
MDA-MB330 + 0.9 2

aLCC1: estrogen independent and responsive which is selected for 
growth in vivo without estrogens; LCC2: selected from LCC1 by 
treatment with 4-OH TAM; LCC9: selected from LCC1 by treatment 
with ICI 182780, resistant to ICI182780 and 4-OH TAM:, LY-2: 
selected for resistance to 4-OH TAM, KEO and LY 117018; R27: able 
to grow in the presence of 4-OH TAM. LCC6 is the more aggressive 
variant of MD-MB435. AK-47 is the variant derived from ZR-75-1. 
A1N4 is a normal breast cell line.
bCell lines listed in Table 2 are in bold.
Page 4 of 8
(page number not for citation purposes)



BMC Cancer 2006, 6:111 http://www.biomedcentral.com/1471-2407/6/111
patterns do not seem to directly link to AIB1 gene amplifi-
cation, it is possible that the alteration in poly Q length
affects protein-protein interaction, thus, the transactiva-
tion activity of AIB1. While most alterations do not change
poly Q length significantly, rare sequence pattern in LCC2
with much shorter (only 14 repeats) poly glutamine tract
may affect the co-transactivating activity of AIB1 gene.

Discussion
Genetic and clinical phenotypic heterogeneity is the
prominent characteristic of breast cancer. Multiple genetic
alterations contribute to breast cancer development and
progression [35,36]. The occurrence of DNA amplifica-
tions in breast cancer had been studied by Southern blot

[1], FISH (fluorescence in situ hybridization) [4] and
CGH methods (comparative genomic hybridization) [37-
39]. We developed real time quantitative PCR method to
more accurately assess the amplification of AIB1 gene in
breast cancer cell lines. Amplification of AIB1 in breast
cancer cell lines; BT-474 and MCF-7 were first reported by
Guan et al. [3]. By FISH analysis, Anzick et al. [7] observed
>20 fold amplification of AIB1 gene in three ER positive
breast cancer cell lines (BT-474, MCF-7 and ZR-75-1) and,
to a lesser extent, in 10% primary breast tumors. In this
study we did not detect significant amplification in ZR-75-
1 cell line. The discrepancy may be explained by a differ-
ent source of the cell line or by spontaneous change of the
cell line during passages. In addition, FISH analysis is

Table 2: Poly Q sequence patterns and AIB1 amplification level in MCF7 and its variants

Cell linea amplification Sequence patterns Pattern (Q)n Frequency

MCF-7 22.3 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 7/7
MCF-7 P19 18.7 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 7/9

(CAG)6CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 2 29 1/9
(CAG)5CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 3 28 1/9

MCF-7 P72 22.8 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 5/7
(CAG)3CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 4 25 1/7
(CAG)3CAA(CAG)7(CAACAG)3(CAACAGCAG)2CAA 5 24 1/7

LCC1 13.5 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 7/9
(CAG)3CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 4 25 1/9
(CAG)3CAA(CAG)14(CAACAG)2(CAACAGCAG)2CAA 6 29 1/9

LCC2 14.6 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 4/5
CAG(CAACAG)3(CAACAGCAG)2CAA 7 14 1/5

LCC9 15.6 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 7/8
(CAG)3CAA(CAG)2CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 8 29 1/8

LY-2 19.9 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 9/10
(CAG)6CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 9 28 1/10

R27 19.4 (CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 8/9
(CAG)3CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 4 25 1/9

MDA-MB435 1.3 (CAG)3CAA(CAG)2CAA(CAG)11(CAACAG)2(CAACAGCAG)2CAA 10 29 2/8
(CAG)6CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 9 28 3/8
(CAG)3CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 1 26 2/8
(CAG)6CAA(CAG)8(CAACAG)2(CAACAGCAG)2CAA 11 26 1/8

LCC6 2.0 (CAG)3CAA(CAG)2CAA(CAG)10(CAACAG)2(CAACAGCAG)2CAA 12 28 1/9
(CAG)3CAA(CAG)2CAA(CAG)6(CAACAG)3(CAACAGCAG)2CAA 13 26 1/9
(CAG)6CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 9 28 3/9
(CAG)3CAA(CAG)2CAA(CAG)10(CAACAG)3(CAACAGCAG)2CAA 14 30 1/9
(CAG)6CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 15 28 1/9
(CAG)3CAA(CAG)2CAA(CAG)11(CAACAG)2(CAACAGCAG)2CAA 10 29 1/9
(CAG)3CAA(CAG)2CAACAGCAA(CAG)8(CAACAG)2(CAACAGCAG)2CAA 16 28 1/9

ZR-75-1 1.5 (CAG)6CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 2 29 6/7
(CAG)5CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 3 28 1/7

AK-47 1.4 (CAG)6CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 2 29 2/8
(CAG)6CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 11 28 5/8
(CAG)5CAA(CAG)8(CAACAG)3(CAACAGCAG)2CAA 15 27 1/8

A1N4 2.0 (CAG)6CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 2 29 20/41
(CAG)4CAA(CAG)9(CAACAG)3(CAACAGCAG)2CAA 17 27 21/41

aLCC1: estrogen independent and responsive which is selected for growth in vivo without estrogens; LCC2: selected from LCC1 by treatment with 
4-OH TAM; LCC9: selected from LCC1 by treatment with ICI 182780, resistant to ICI182780 and 4-OH TAM:, LY-2: selected for resistance to 4-
OH TAM, KEO and LY 117018; R27: able to grow in the presence of 4-OH TAM. LCC6 is the more aggressive variant of MD-MB435. AK-47 is the 
variant derived from ZR-75-1. A1N4 is a normal breast cell line. The parental sequence patterns are in bold.
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restricted to a few cells, whereas real time qPCR analysis
measures the gene in the overall DNA extract. Glaeser et
al. [2] used the quantitative differential PCR to determine
the amplification level of AIB1 and found no amplifica-
tion in breast or endometrial carcinomas. These methods
did not give actual copy numbers of the gene. In this
study, we used real-time Q-PCR to determine the level of
AIB1 amplification. The ability of real-time Q-PCR to
detect the fluorescent signal from degraded sequence spe-
cific TaqMan probe at the very beginning period of expo-
nential stage offered an accurate way of DNA
quantification. When compared to CGH, FISH and South-
ern blot analysis, this method has the advantage of high
sensitivity, reproducibility, and efficiency.

If only the original cell lines were counted, the AIB1 gene
was amplified in 2 out of 9 ER positive and none of 10 ER
negative cell lines. Higher degree (22%) of AIB1 amplifi-
cation in ER positive breast cancer cell lines may suggest
the association between AIB1gene amplification and ER
status. This is further supported by the observation that
the AIB1 amplification moderately decreased when cells
became ER independent as LCC1, LCC2 and LCC9 con-
sistent with the role of AIB1 in ER-dependent signaling.
All MCF-7 variant cell lines maintain high level of AIB1
gene amplification of the parental cells. Additional gain of
resistance to an antiestrogen, ICI182,780, does not have
significant effect on AIB1 amplification (from LCC1 to
LCC9). Similarly, resistance to 4-OH TAM is not consist-
ently accompanied with the change in AIB1 gene amplifi-
cation. LY-2, R27, and LCC2 were all selected from
estrogen dependent MCF-7 cells against high dose of 4-
OH TAM. AIB1 gene amplification in LY-2 and R27 cell
lines remained almost unchanged, whereas in LCC2, AIB1
gene amplification is moderately decreased. These data
suggest that resistance to 4-OH TAM does not necessarily
affect AIB1 gene amplification. It should be noted that in
LCC2 there is a short poly Q containing mutant AIB1 and
lower expression of the gene may be compensated by the
increase in co-transactivation activity of the mutant pro-
tein. Our observation of variations in AIB1 gene amplifi-
cation in various derivatives of MCF-7 cell clines is
consistent with the previous report in which several MCF-
7 sublines were shown to have the capacity to generate
clonal heterogeneity. This represents an important selec-
tive advantage in MCF-7 in leading to aggressive and met-
astatic forms of the disease [40].

Besides the quantitative regulation of AIB1 gene in breast
cancer cell lines, the AIB1 gene contains CAG repeat
region which is a target for genetic instability in tumor
progression. Large expansion of triplet repeat occurs in
various neurodegenerative diseases [41-43]. These abnor-
mal proteins form large aggregates that have been shown
to tie up transcription factors that bind poly Q such as

CREB [44]. The poly Q tract in the androgen receptor (AR)
gene is unique in that the large expansion of poly Q
encoding CAG repeat causes the X-linked spinal bulbar
muscular atrophy (SBMA, or Kennedy Disease) [19,20],
but short poly Q of AR is correlated with hormone-
dependent transactivation [19,20] and more aggressive
form of cancer [21,45]. AIB1 shares several structural/
functional similarities with AR. Both genes are involved in
nuclear receptor mediated regulation of gene expression.
Due to frequent interruption with CAA's, large expansion
of the triplet was not observed in AIB1 gene. This region,
however, was quite unstable as evidenced by frequent
CAA/CAG changes and small insertions and deletions.
The PCR/cloning strategy allows us to investigate the pol-
ymorphic poly Q encoding region at single molecule
level. Since we only sequenced a small number of clones
from each individual, we cannot exclude the possibility
that the under-represented alleles may be lost in PCR/
cloning/sequencing process. Several distinct poly Q
encoding sequence patterns were observed in LCC-6,
T47D, and MDA-MB157. T47D is a cell line of notable
genetic instability that was observed in the estrogen recep-
tor gene [46]. LCC6 cell line which formed ascites was a
more aggressive form of MDA-MB435 [30]. Since various
rare poly Q encoding sequences seem to arise randomly
and independently in different cell lines regardless of the
AIB1 gene amplification levels, we attribute these somatic
mutations to genetic mutability in cancer cells.

Conclusion
The poly Q encoding sequence of AIB1 gene is genetically
unstable and is an easy target for somatic mutations in
cancer cells.AIB1 gene amplification occurs in only a
small fraction of ER positive primary breast tumors and
breast cancer cell lines. AIB1 gene amplification has not
been found in ER negative primary tumor or breast cancer
cell lines. Gain of estrogen independence and resistance to
steroid antiestrogen may be accompanied by moderate
decrease of AIB1 gene amplification.
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Abstract
Hormone-dependent estrogen receptor (ER)-positive breast cancer cells may adapt to low
estrogen environments such as produced by aromatase inhibitors. In many instances, cells
become insensitive to the effects of estrogen but may still retain dependence on ER. We have
investigated the expression, function, and activation of ERa in two endocrine-resistant MCF-7
models to identify mechanisms that could contribute to resistance. While MCF-7/LCC1 cells are
partially estrogen dependent, MCF-7/LCC9 cells are fully estrogen insensitive and fulvestrant and
tamoxifen resistant. In both MCF-7/LCC1 and MCF-7/LCC9 cell lines, high expression of ERa was
associated with enhanced binding to the trefoil factor 1 (TFF1) promoter in the absence of
estrogen and increased transcription of TFF1 and progesterone receptor. In contrast to the
observations derived from hypersensitive and supersensitive models, these cells were truly
estrogen independent; nevertheless, removal of ERa by siRNA, or fulvestrant, a specific ER
downregulator, inhibited growth indicating dependence on ERa. In the absence of estrogen,
neither ERa Ser118 nor Ser167 were phosphorylated as frequently found in other ligand-
independent cell line models. Addition of estrogen activated ERa Ser118 in MCF-7 and LCC1 cells
but not in LCC9 cells. We suggest that the estrogen-independent growth within these cell lines is
accounted for by high levels of ERa expression driving transcription and full estrogen
independence explained by lack of ERa activation through Ser118.
Endocrine-Related Cancer (2006) 13 1121–1133
Introduction

Estrogen receptor a (ERa) is a major growth regulator

for many breast cancers and has provided an

exploitable target for therapy (Ali & Coombes 2002).

Estrogen binding to ERa promotes conformational

changes in the receptor leading to dimerization and

attachment to DNA, generally at the site of conserved

estrogen response elements in the promoter regions of

target genes (Ali & Coombes 2002). Functional

regulation of ERa is additionally mediated via

phosphorylation of key residues in the activation

function 1 (AF-1) domain of ERa including Ser118

and Ser167 and these influence both DNA binding and
Endocrine-Related Cancer (2006) 13 1121–1133
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recruitment of cofactor molecules (reviewed in

Lannigan 2003). The activation of ER involves

crosstalk with other growth factor-signaling pathways.

There is extensive evidence that activation of the

mitogen-activated protein kinase (MAPK)-signaling

cascade and the phosphoinositol 3 kinase (PI3-K)

pathway phosphorylate ERa at Ser118 and Ser167, via

extracellular signal-regulated kinase (ERK)1/2 and Akt

respectively (Bunone et al. 1996, Martin et al. 2000,

Lannigan 2003). Transcriptional activation of ERa

then involves a dynamic process where large transcrip-

tion complexes incorporating co-activator proteins are

assembled in an ordered and combinatorial manner
t Britain

DOI:10.1677/erc.1.01257

Online version via http://www.endocrinology-journals.org



B Kuske, C Naughton et al.: Endocrine therapy resistance in breast cancer
(Glass & Rosenfeld 2000, Metivier et al. 2003).

Well-defined estrogen-regulated genes include trefoil

factor 1 (TFF1)/pS2 (Masiakowski et al. 1982,

Jakowlew et al. 1984) and progesterone receptor

(PGR; Nardulli et al. 1988).

While tamoxifen has been the established form of

treatment for ER-positive breast cancers for more than

20 years, other anti-estrogen strategies, notably

aromatase inhibitors (Johnston & Dowsett 2003) and

selective estrogen downregulators (SERDs), are

increasingly being used (Robertson 2002). Despite

initial responsiveness to these agents, most tumors

eventually recur with acquired resistance (Clarke et al.

2001, 2003). Multiple mechanisms, dependent on the

form of endocrine treatment, are involved in the

development of resistance and, in many cases, these

mechanisms remain unclear. During the acquisition of

endocrine resistance, progressive changes are fre-

quently observed, with ER-positive breast cancer

cells progressing in a stepwise manner from a fully

estrogen-sensitive phenotype to an estrogen-sensitive,

but no longer dependent phenotype, to a fully resistant

phenotype (Clarke et al. 2001, 2003).

With the increasing clinical use of aromatase

inhibitors, such as letrozole, anastrazole, and

exemestane which act by inhibiting estrogen

synthesis (Johnston & Dowsett 2003), there has

been great interest in how breast cancer cells can

adapt to low estrogen environments and become

resistant to the effects of these drugs. In most cases

of acquired anti-estrogen resistance, expression of

ERa is retained, suggesting that resistance involves

either changed functionality or bypass of the

receptor. Culturing breast cancer cells in estrogen-

low conditions to produce long-term estrogen

deprivation (LTED) has identified mechanisms of

estrogen hypersensitivity and estrogen supersensitiv-

ity (Yue et al. 2002, Martin et al. 2003, 2005a,b,

Santen et al. 2005). Estrogen hypersensitivity is

characterized by the ability of cells to respond to

levels of estrogen at concentrations 2–3 log lower

than required to stimulate wild-type cells (Yue et al.

2002, Santen et al. 2005). This mechanism involves

increased expression of ERa alongside enhanced

phosphorylation of ERa Ser118 and is associated

with activation of the ERK1/2 and PI3-K pathways.

Estrogen supersensitivity, wherein cells are appa-

rently estrogen independent, is a mechanism again

associated with enhanced ERa expression, ERK

activation, and activation of ERa Ser118 and involves

ERa being supersensitized by growth factor acti-

vation (Martin et al. 2003, 2005a).
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While higher levels of ERa expression are

generally associated with enhanced estrogen

response, in certain cases tumors expressing high

levels of ERa can be insensitive to endocrine

manipulation. High levels of ERa expression have

been associated with increased proliferation rates

(Black et al. 1983) and poor prognosis in breast

cancer patients not receiving adjuvant therapy

(Black et al. 1983, Thorpe et al. 1993). It has

been suggested that a high level of ERa may lead

to constitutive activation (Fowler et al. 2004). This

mechanism has recently been demonstrated by

Fowler et al. (2004, 2006) in a tetracycline-

inducible ERa expression model of the MCF-7

cell line, wherein increased ERa expression

resulted in aberrant promoter occupancy and gene

activation in the absence of estrogen. The increased

receptor activity required the amino-terminal

domain and was not inhibited by tamoxifen,

supporting the notion of AF-1 activation, yet was

independent of Ser104/106 and Ser118 phosphoryl-

ation (Fowler et al. 2004).

In these models, the expression of ERa is still

critical to the response and it has been suggested that

use of a SERD such as fulvestrant (faslodex, ICI

182 780) would be a beneficial strategy once resistance

to aromatase inhibitors has developed (Johnston et al.

2005, Martin et al. 2005b). A number of laboratories

are developing models of resistance to this agent to

identify strategies that might be tried at the onset of

resistance (Dowsett et al. 2005, Howell 2005, Johnston

et al. 2005, Martin et al. 2005b, Nicholson et al. 2005,

Normanno et al. 2005).

We have investigated two MCF-7 cell lines

(MCF-7/LCC1 and MCF-7/LCC9), which have

acquired estrogen insensitivity and with variable

sensitivity to tamoxifen and fulvestrant to identify

novel mechanisms of endocrine resistance that might

arise in clinical specimens. The wild-type ER-positive

MCF-7 breast cancer cell line is both estrogen

dependent and responsive to anti-estrogens, such as

tamoxifen and fulvestrant. The MCF-7/LCC1 (LCC1)

cell line was derived from an MCF-7 xenograft, which

had grown in a low estrogen environment in an

immuno-deprived mouse and which was known to be

estrogen independent but with a degree of estrogen

sensitivity (Brunner et al. 1993). Treatment of the cell

line with fulvestrant produced the MCF-7/LCC9

(LCC9) cell line which is fully resistant to both

estrogen and fulvestrant (Brunner et al. 1997). A

number of novel features of these lines were identified

within this study and are reported here.
www.endocrinology-journals.org
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Materials and methods

Cell proliferation

MCF-7 cells were routinely grown in phenol red

containing Dulbecco’s modified Eagle medium

(DMEM) supplemented with 10% fetal calf serum

(FCS), penicillin (100 units/ml), and streptomycin

(100 (g/ml). LCC1 and LCC9 cells (source: Dr Robert

Clarke, V T Lombardi Cancer Research Center,

Georgetown University Medical School, Washington,

DC, USA) were routinely kept in phenol-free

containing DMEM supplemented with 5% dextran-

activated charcoal-stripped fetal calf serum (DCC),

penicillin (100 units/ml), streptomycin (100 (g/ml),

and 2 mM glutamine. All cells were grown at 37 8C

in 5% CO2. To determine the effects of 17b-estradiol
(E2) and tamoxifen on cell proliferation, MCF-7 cells

were seeded in six-well plates in phenol red containing

DMEM with 10% fetal bovine serum (FBS) for 24 h.

The media were changed to phenol red-free DMEM

with 5% DCC for 48 h. The cells were then

supplemented with media containing either 1 nM E2,

1 mM tamoxifen or both. LCC1 and LCC9 cells were

seeded in six-well plates in phenol red-free containing

DMEM with 5% DCC and after 24 h supplemented

with E2 and/or tamoxifen. Cell growth was evaluated

using a Coulter counter. Fulvestrant was a kind gift

from Dr Alan Wakeling (AstraZeneca, Macclesfield,

Cheshire, UK). For studies exploring growth in

DMEM without serum, the sulforhodamine-B (SRB)

colorimetric assay was used.

Briefly, log phase cells were seeded into 96-well

flatbottom tissue culture plates. The following day,

cells were washed in PBS and media replaced with

phenol red-free DMEM for 48 h. Cells were then

treated with concentrations of E2 varying from 10 fM

to 1 mM in the absence or presence of 100 nM

fulvestrant. After 72 h, plates were removed from the

incubator and ice-cold 25% trichloroacetic acid (TCA)

solution (50 ml) added to each well. All plates were

placed on ice for 60 min after which the TCA solution

was removed. The plates were washed under running

water and dried prior to staining with SRB dye solution

(30 min at room temperature) and the trays were

washed with 1% glacial acetic acid (!4) at room

temperature, air-dried, and resuspended in 10 mM Tris

buffer (pH 10.5; 150 ml) before reading at 540 nm.
RNA extraction and RT-PCR

Extraction of total RNA from whole cells was

performed using Tri-Reagent (Sigma) as per the

manufacturers’ instructions. RNA concentration was
www.endocrinology-journals.org
measured using a spectrophotometer. QuantiTect

SYBR Green system (Qiagen, cat no. 204243) was

used according to the manufacturers instructions for

one step RT-PCR in a total of 15 ml reaction volumes,

including 0.5 mM each primer and 40 ng RNA. Real-

time cycler conditions were RT: 50 8C for 30 min;

PCR: initial activation 95 8C for 15 min followed by 40

cycles of denaturation 94 8C for 15 s, annealing 57 8C

for 30 s, extension 72 8C for 30 s, and a final extension

of 72 8C for 60 s. The following primers were used:

TFF1: fwd TTGTGGTTTTCCTGGTGTCA

rev CCGAGCTCTGGGACTAATCA

ERa: fwd CCACCAACCAGTGCACCATT

rev GTCTTTCCGTATCCCACCTTTC

PGR: fwd GTCAGTGGGCAGATGCTGTA

rev AGCCCTTCCAAAGGAATT

ACTIN: fwd CTACGTCGCCCTGGACTTCGAGC

rev GATGGAGCCGCCGATCCACACGG
Western analysis

Cells were washed twice with PBS and lysed in

ice-cold lysis buffer (50 mM Tris (pH 7.5), 5 mM

EDTA (pH 8.5), 150 mM NaCl, 1% Triton X-100,

aprotinin 10 mg/ml, and 1! protease cocktail inhibitor

(Roche) for 10 min and the debris was cleared by

centrifugation at 13 000 r.p.m. for 6 min at 4 8C).

Protein lysates (100 mg) were resolved on 7.5–12%

SDS-PAGE and electrophoretically transferred to

Immobilon-P membranes. After transfer, membranes

were blocked and probed with primary antibody

overnight at 4 8C. Immunoreactive bands were

detected using chemiluminescent reagents (ECL or

SuperLuminol) and photographic paper (Hyperfilm,

Amersham). The following antibodies were used: ERa
(F-10; Santa Cruz Biotech, Santa Cruz, CA, USA sc-

8002), PGR (ab-8; Neomarkers, Stratech Scientific

Ltd, Newmarket, Suffolk, UK (MS-298)), P-ERK1/2

(1:1000, Cell Signaling, New England Biolabs,

Hitchin, Herts, UK #9101), phospho-Ser118 ERa
(1:500, Cell Signaling #2511), phospho-Ser167 ERa
(1:500, Cell Signaling #2514), and actin (1:120 000,

CP01, Calbiochem, La Jolla, CA, USA). Integrated

optical density absorbance values were obtained by

densitometric analysis using a gel scanner and

analyzed by ‘Labworks’ gel analysis software (UVP

Life Sciences, Cambridge, UK).

Chromatin immunoprecipitation assays (ChIP)

Cells were grown to 85–90% confluence in phenol red-

free DMEM with 5% DCC for at least 48 h. Cells were
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cross-linked with 1% formaldehyde (37 8C for 10 min)

at 10-min interval over a 90-min time course.

Unreacted formaldehyde was quenched by gentle

agitation at room temperature for 10 min with

0.125 M glycine. Cells were then washed twice with

ice-cold PBS, collected into PBS containing protease

inhibitors (Roche), and centrifuged for 4 min at

2000 r.p.m. at 4 8C. The pellets were resuspended in

lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris–HCl

(pH 8.1), and 1! protease inhibitor cocktail),

incubated on ice for 10 min, and sonicated (12!20 s

at two amplitude microns, Soniprep 150, MSE) to

fragment DNA to w500 bp. Following centrifugation

for 15 min at 13 000 r.p.m. and 4 8C, supernatants were

collected and resuspended in dilution buffer (0.01%

SDS, 1% Triton X-100, 1.2 mM EDTA, 16.7 mM

Tris–HCl (pH 8.1), 167 mM NaCl, and 1! protease

inhibitor cocktail). Chromatin were precleared with

1 mg anti-rabbit or anti-mouse IgG, 2 mg sheared

salmon sperm DNA, and Protein-G-Agarose (50 ml of
50% slurry in dilution buffer) for 3 h at 4 8C.

Immunoprecipitation using Protein-G-Agarose Beads

(Roche) was performed overnight at 4 8C with anti-

ERa HC-20 antibody (sc-543, Santa Cruz). Beads were

washed sequentially for 5 min each at 4 8C with TSE I

(20 mM Tris (pH 8.1), 2 mM EDTA, 150 mM NaCl,

1% Triton X-100, and 0.1% SDS), TSE II (20 mM Tris

(pH 8.1), 2 mM EDTA, 500 mM NaCl, 1% Triton

X-100, and 0.1% SDS), and buffer III (10 mM Tris (pH

8.1), 0.25 M LiCl, 1 mM EDTA, 1% NP40, and 1%

deoxycholate). Precipitates were then washed twice

with TE buffer and the protein/DNA complexes were

eluted twice with 0.1 M NaHCO3 and 1% SDS. Heat

treatment at 65 8C overnight reversed formaldehyde

cross-links. DNA fragments were purified using

QIAquick Spin Kit columns (Qiagen) and amplified

using the QuantiTect SYBR Green system (Qiagen, cat

no. 204242). TFF1 PCR conditions were: initial

activation of 95 8C for 15 min followed by 45 cycles

of 94 8C for 15 s, 55 8C for 30 s, 72 8C for 30 s, and a

final extension of 72 8C for 5 min. TFF1 primer

sequences: fwd GACGGAATGGGCTTCATGAGC

and rev CTGAGACAATAATCTCCACTG. For the

distal region, primers were: fwd GAGTTTGGCCTCC-

CACATTA and rev CTTGCCTCTGCATTCTCTCC.
Short interfering (siRNA) transfections

MCF-7 cells were seeded at 0.5!106 cells per T75 flask

in DMEM as mentioned previously. After 24 h, the

media were changed to phenol red-free containing

DMEM with 5% DCC for 48 h. LCC1 and LCC9 cells

were seeded directly into phenol red-free containing
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DMEM with 5% DCC for 24 h prior to transfection.

Cells were transfected with siRNA for 4 h using

Oligofectamine reagent (Invitrogen) after which time

1 nM E2 was added for a further 48 h prior to RNA and

protein extraction. For the 7-day time course, the media

were left unchanged after the initial changes. For siRNA

growth assays, cells were seeded as for growth

characterization as mentioned previously. siRNA

transfections were carried out as described earlier but

scaled down for 24-well plates. Following siRNA

treatment for 4 h, cells were treated with 1 nM E2 or

100 nM fulvestrant or a combination and cell counts on

days 0, 3, and 6 were estimated using a Coulter counter.

The following siRNA sequences were used: ER RNAi

1; ESR1 SMARTpool (four pooled sequences; Upstate

Biotechnology, Lake Placed, NY, USA; M-003401;

100 nmol), ER RNAi 2; 5 0-AAACAGGAGGAA-

GAGCTGCCA (Ambion; 40 nmol), ER RNAi 3; 5 0-

AACCTCGGGCTGTGCTCTTTT (Ambion, Hunting-

don, Cambridgeshire, UK; 40 nmol), and negative

RNAi: Upstate (D-001206; 100 nmol).
Results

Increased ERa expression in resistant cell lines

To explore the possibility that high ERa expression

leads to estrogen-independent growth in endocrine-

resistant cells, the expression levels of ERa in resistant

lines (LCC1 and LCC9) were compared with levels in

wild-type MCF-7 cells. Both resistant lines expressed

between four- and elevenfold more ERa mRNA than

wild-type cells (Fig. 1A). ERa protein levels were

clearly elevated in LCC1 cells relative to MCF-7 cells

(sevenfold) and less markedly in LCC9 cells (Fig. 1B).

E2 decreased ERa protein in MCF-7 cells at 48 h and

this has been explained by proteosomal degradation, a

process speculated to limit the action of estrogen

signaling (Nawaz et al. 1999; Fig. 1C). Similarly, both

resistant lines demonstrated ERa turnover, suggesting

that ERa is binding to E2 in all cases. In contrast,

tamoxifen treatment results in maintenance of the

receptor expression levels in all three cell lines

(Fig. 1C).

Addition of 1 nM 17 b-estradiol (E2) to MCF-7 cells

produced a marked stimulation of growth to cells

cultured in estrogen-depleted (double charcoal-

stripped FCS) medium (Fig. 2A). In the absence of

E2, MCF-7 cells are essentially static (Fig. 2A). In

contrast, LCC1 cells grow rapidly in estrogen-depleted

conditions and show an approximately twofold

stimulation of growth on addition of E2 (Fig. 2B).

LCC9 cells showed a lack of response to E2, again
www.endocrinology-journals.org



Figure 1 ERa expression in MCF-7, LCC1, and LCC9 cells. (A) ERa mRNA expression. Cells were grown in charcoal-stripped
serum-containing medium for at least 48 h and RNAwas collected. A representative experiment is shown of at least two experiments
carried out. Each column presents mean of triplicate RT-PCR analysis for each sample demonstrating mRNA expression relative to
actin expression. Error barsZS.D. Statistical significance noted for treatment groups versus matched control (one-way ANOVA and
multiple comparison Tukey–Kramer test; *P!0.05). (B) Western blot analysis of ERa (66 kDa) in breast cancer cell lines grown in
charcoal-stripped serum-containing medium for 48 h prior to protein collection. One hundred micrograms of protein were loaded per
lane and detected using either anti-ERa (Santa Cruz Biotech) or anti-actin (Calbiochem) antibodies as described in Materials and
methods. (C) Western blot analysis of ERa (66 kDa) in breast cancer cell lines grown in charcoal-stripped serum-containing medium
for at least 48 h prior to protein collection. One hundred micrograms of protein were loaded per lane and detected using either anti-
ERa (Santa Cruz Biotech) or anti-actin (Calbiochem) antibodies as described in Materials and methods. (D) ERa binding to the TFF1
promoter. Basal recruitment of ERa to the TFF1 promoter was determined by ChIP analysis on untreated cells. The ChIP method
used was as described in Materials and methods and immunoprecipitated TFF1 promoter was quantified by real-time PCR. The
input-corrected expression values were determined by normalizing to the inputs. Data are presented as meanCS.E. Groups were
compared with the Kruskal–Wallis test with Dunn’s multiple comparison test (*P!0.05). Binding to the promoter region is compared
with binding to a region 3.5 kb distal to the promoter wherein only background binding was observed.
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growing very rapidly in the absence of E2 (Fig. 2C).

Addition of 1 mM tamoxifen to MCF-7 cells antag-

onized the E2-stimulated growth in this cell line.

Tamoxifen also inhibited the E2-stimulated growth of

LCC1 cells but had no effect on LCC9 cells (Fig. 2B

and C). These results are consistent with wild-type

cells being estrogen dependent, LCC1 cells demon-

strating partial estrogen dependence and LCC9 cells

being fully estrogen independent.
Reduced ERa Ser118 phosphorylation

in LCC9 cells

Several frequently cited mechanisms of estrogen-

independent activation of ERa involve phosphoryl-

ation of ERa at the Ser118 or Ser167 residues mediated

via ERK or Akt respectively (Bunone et al. 1996,

Martin et al. 2000, Lannigan 2003). While the Ser118
www.endocrinology-journals.org
residue is a major site of E2-induced phosphorylation,

Ser167 is not (Lannigan 2003). The latter site is

activated by growth factor signaling. In view of these

previous observations, we first investigated whether

ERa Ser118 or Ser167 phosphorylation were increased

in the absence of estrogen in the resistant cell lines.

Neither was there evidence of increased Ser118

phosphorylation in the resistant lines relative to

MCF-7 under basal conditions, nor was Ser167

phosphorylation increased (Fig. 3A–C). Furthermore,

phospho-ERK1/2 expression was unchanged in the

lines (Fig. 3C). On E2 addition, there was a marked

increase in Ser118 phosphorylation in MCF-7 cells and

this was also observed in the LCC1 cell line (Fig. 3A

and B). However, minimal change was observed on E2

addition to LCC9 cells (Fig. 3A and B). Ser118

phosphorylation has been proposed to affect cofactor

recruitment and this might explain the reduced
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transcriptional (as mentioned below) and growth

responses observed on E2 addition to this cell line.

Tamoxifen alone produced a small increase in Ser118

phosphorylation in MCF-7 and LCC1 cells but not in

LCC9 cells (Fig. 3A and B). Tamoxifen also produced

a reduction of estrogen’s Ser118 phosphorylation in the

MCF-7 and LCC1 cell lines (Fig. 3A and B).
Modified DNA binding of ERa in resistant

cell lines

Toexplorewhether highERa expressionwas reflected in

enhanced DNA binding in the absence of E2, ChIP

methodology was used to examine ERa binding to the

promoter of the E2-responsive gene TFF1 in the MCF-7,

LCC1, and LCC9 cell lines. LCC9 cells had O2.5-fold

greater ERa binding to the TFF1 promoter than MCF-7

cells (Fig. 1D). However, this binding was significantly

higher in LCC1 cells with levels greater than eightfold

aboveMCF-7 cells. This enhancedERa binding inLCC1

cells was equivalent to the increased expression of ERa
protein and is consistent with the suggestion by Fowler et

al. (2004) that enhancedERa protein expression can lead

to increased DNA binding. As a control, binding to a

region 3.5 kb distal to this region indicated only

background levels as expected (Fig. 1D).
1126
Growth responses to estrogen and tamoxifen

in the wild-type and variant cell lines are reflected

in transcriptional changes

To investigate the differences in estrogen and anti-

estrogen activation processes, indicator genes that

reflected the different growth responses were next

investigated. Transcriptional changes in the estrogen-

regulated genes TFF1 and PGR were measured

and modulated expression was compared with the

growth changes.

Expression of TFF1 mRNA in the absence of E2 was

higher in both resistant lines compared withMCF-7 cells

(Fig. 4A). After 48-h E2 (1 nM) treatment, TFF1 mRNA

was increased byO20-fold inMCF-7 cells, but only one-

to twofold in the resistant lines although this increasewas

significant. Tamoxifen (1 mM)produced a small increase

in TFF1 expression in MCF-7 and LCC1 cells but not in

the LCC9 cell line (Fig. 4A). These levels broadly reflect

the growth differences observed.

The expression of PGR mRNA in the absence of E2

was greater in LCC1 and LCC9 lines compared with

MCF-7 cells (Fig. 4B). As for TFF1, after 48-h E2

treatment, PGR mRNA was increased by O20-fold in

MCF-7 cells and 2–5-fold in LCC1 and LCC9 cell lines

(Fig. 4B). Tamoxifen also increased the PGR mRNA
www.endocrinology-journals.org
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expression level not only in MCF-7 cells, but also in

LCC1 cells producing effects equivalent to that of E2 in

the latter cell line. No change was observed in the

LCC9 cell line.

These results are consistent with transcription of

TFF1 and PGR being increased by ligand-independent

mechanisms in LCC1 and LCC9 cell lines with

estrogen and tamoxifen producing an additional

ligand-dependent increase.
Effect of removal of ERa on the growth

of the cell lines

To determine the relative importance of ERa on

downstream gene expression and growth of MCF-7,

LCC1, and LCC9 cells, we investigated the effects of

removing ERa, either by specific siRNA inhibition of

receptor synthesis or through inhibition and

degradation of the receptor by fulvestrant.

A panel of interfering RNAs (siRNAs) were initially

compared for their ability to transiently reduce ERa
expression and were transfected into the MCF-7 cell
www.endocrinology-journals.org
line. RNAi 1 is a pooled set of four targeted sequences

(Imai et al. 2005) while RNAi 2 (5 0-AAACAGGAG-

GAAGAGCTGCCA) and RNAi 3 (5 0-AACCT-

CGGGCTGTGCTCTTTT) are individually targeted

sequences (Leu et al. 2004). Of the three, RNAi 2

produced the best reduction of ERa mRNA and protein

and was selected for further experiments (Fig. 5A and

B). Quantitative RT-PCR analysis showed that, 48 h

after transfection, ERa RNAi 2 treatment resulted in an

85% decrease in ERa mRNA expression and an 87%

decrease in the presence of E2 (Fig. 5C). LCC1 and

LCC9 cells have significantly higher basal expression

of ERa mRNA and siRNA removal caused an 82 and

73% decrease respectively with similar reductions in

the presence of E2 (Fig. 5C). Western analysis of the

MCF-7 and LCC1 cell lines demonstrated that RNAi 2

produced ERa protein knockdown over a 7-day period

(Fig. 5D) and it was effective in all three cell lines

(Fig. 5E). This reduction in ERa protein was

accompanied by a decrease in PGR protein (Fig. 5E).

Thus, it appeared that gene expression in all three cell

lines was ERa dependent.
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This was investigated further using fulvestrant.

Fulvestrant abrogates E2-induced gene transcription

by binding, blocking, and causing the degradation of

ERa (Parker 1993). Fulvestrant treatment in MCF-7

cells blocked E2-induced expression of TFF1 and PGR

(Fig. 4A and B). In addition, ligand-independent and

E2-induced TFF1 and PGR expression in LCC1 cells

were reduced on fulvestrant treatment. These data

confirm that for LCC1 cells TFF1 and PGR induction

are dependent on ERa expression. However, LCC9

cells are resistant to fulvestrant treatment and as such

no change in TFF1 expression and only a minor change

in PGR expression was observed. The effect of

fulvestrant on the growth of all three cell lines was

also investigated in the complete absence of serum

(Fig. 6). Under these conditions, MCF-7 cells did not

grow over a 72-h period. LCC1 cells, however, still

proliferated and the addition of E2 had little effect on

growth confirming their independence of E2. Under

these conditions, fulvestrant was able to oppose the

effect of low concentrations of E2 again indicating

dependence on ERa. In contrast, LCC9 cells

were completely insensitive to both E2 and
1128
fulvestrant. Fulvestrant degraded ERa protein in all

three lines which is shown in Fig. 7A.

To determine how critical levels of ERa expression

were for the growth of MCF-7, LCC1, and LCC9 cell

lines, we used RNAi removal with or without fulvestrant

to inhibit the synthesis of ERa protein (Fig. 7B–D). E2-

induced MCF-7 cell growth was significantly decreased

(33%) by ERa removal and abolished by all com-

binations of fulvestrant alone or with RNAi. LCC1 cells

grew in the absence of E2 and RNAi removal had only a

minor effect on growth. E2-induced LCC1 cell growth

was reduced by approximately 40% when ERa was

removed through RNAi, but, unlike MCF-7 cells,

fulvestrant alone was not enough to abolish growth –

this, however, could be accomplished though through

combination with RNAi. LCC9 cell growth in the

absence of E2 was reduced by ERa RNAi. A similar

decrease was observed in the presence of E2. LCC9 cells

are fulvestrant resistant and no effect on growth was

observed with this agent. No combinations of fulvestrant

or RNAi were able to totally abolish growth. These

results indicate a varying degree of dependence on ERa
for growth in the three cell lines.
www.endocrinology-journals.org
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Discussion

Aromatase inhibitors are now used for the adjuvant

treatment of most hormone receptor-positive early

breast cancer. Despite the improvement they offer over

tamoxifen alone, recurrences still occur, and thus

models of resistance to both tamoxifen and estrogen

deprivation are required. The series of MCF-7-derived

cell lines provides an excellent model system for the

exploration of mechanisms of stepwise acquisition of

resistance to tamoxifen and estrogen deprivation. Most

models to date have been derived in vitro, which makes

LCC1 cells interesting as the initial estrogen depri-

vation was achieved in vivo and therefore might reflect

features that could arise in a primary breast cancer

(Brunner et al. 1993). In many of the in vitro-derived

LTED models, acquired resistance is due to enhanced

sensitization to low concentrations of estrogen, which
www.endocrinology-journals.org
often involves crosstalk with growth factor-signaling

pathways (Martin et al. 2003, 2005a,b). LCC1 cells

have certain of the characteristics of the LTED

phenotype (Yue et al. 2002, Martin et al. 2003,

2005a,b, Santen et al. 2005) such as a higher

expression level of ERa, an ability to grow in low-

estrogen conditions and elevated TFF1 expression. The

continuous culturing of LCC1 cells in low estrogen

conditions may well contribute to the increased

expression of ERa in this cell line.

However, unlike most LTED-derived cells, which

show little response to physiological levels of estrogen

yet are sensitive to very low levels of estrogen, LCC1

cells appear truly insensitive to the addition of low

levels of exogenous estrogen. Similarly, while most

LTED cells show basal activation of ERK1/2 acti-

vation and ERa via Ser118 phosphorylation, LCC1 and
1129
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LCC9 cells do not. The ER, however, is still clearly

functional in LCC1 cells and linked to growth

regulation as estrogen addition can produce an increase

in growth which could be reversed by tamoxifen. ERa
is also downregulated by the addition of estrogen and

markedly phosphorylated at Ser118. Additionally, the

ERa downregulator fulvestrant reduces expression of

TFF1 and inhibits growth. These effects are more

marked when cells are exposed to fulvestrant with

siRNA removal of ERa.

While constitutive activation of ERa may be

achieved in some instances by phosphorylation of
1130
Ser118 mediated by growth factor-driven activation of

ERK, an increased expression of ERa alone might

account for increased DNA binding. In support of this,

there was enhanced binding of ERa to the TFF1

promoter in the absence of added estrogen in both the

LCC1 and LCC9 cell lines. In addition, TFF1

transcription was markedly increased in the resistant

cell lines consistent with this enhanced ERa-binding
driving transcription. Direct support for such a

mechanism has recently been demonstrated in an

MCF-7 cell line using a tetracycline-inducible ERa
overexpression model (Fowler et al. 2004, 2006). As

with the data mentioned earlier, the results suggested

that elevated levels of ERa resulted in activation of

receptor transcriptional function in a manner distinct

from mechanisms that involve ligand binding or

growth factor-induced phosphorylation of the Ser104,

Ser106 or Ser118 sites. The mechanism required the

amino-terminal A/B domain and was not inhibited by

tamoxifen. It was also uncoupled from ERK activation.

The hypothesis proposed was that overexpression of

unliganded ERa stabilized interactions with the basal

transcriptional machinery, which at normal receptor

levels may be too weak to support effective transcrip-

tion (Fowler et al. 2004).

These results together support a model wherein

growth (and TFF1 transcriptional activation) in LCC1

cells is dependent on ERa. This dependency has some

ligand (i.e., estrogen) responsiveness but is largely

ligand independent. The ligand-dependent component

may be reversed by tamoxifen. The ligand indepen-

dency appears to involve neither growth factor

activation via the Ser118 or Ser167 phosphorylation

routes nor hypersensitization (where low levels of

estrogen produce apparent independence). Instead the

ligand independence appears to be explained by the

high level of ER expression leading to constitutive

activation and promoting DNA binding and transcrip-

tional activation.

We have shown that ERa is functionally active in

the LCC1 model and since this has also been shown in

models demonstrating LTED, a logical clinical

strategy to attempt after development of resistance in

a low estrogen environment (such as produced by

aromatase inhibitor treatment) is to downregulate the

receptor using fulvestrant (Johnston et al. 2005, Martin

et al. 2005a,b). This strategy clearly is effective at

inhibiting growth in LCC1 cells. However, the LCC9

variant was derived after exposure and development of

resistance to fulvestrant (Brunner et al. 1997) and

showed no growth response to either estrogen or

tamoxifen. In this cell line, the negligible changes of
www.endocrinology-journals.org
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ERa Ser118 phosphorylation obtained on estrogen or

tamoxifen addition contrasted with observations in the

other cell lines. Markedly reduced phosphorylation is

likely to affect cofactor binding and our initial findings

suggest that p160 binding (specifically AIB1) is

reduced in this cell line, again consistent with

endocrine insensitivity (Kuske et al. 2004). However,

it is quite clear that fulvestrant can downregulate the

receptor and even extremely high levels of fulvestrant

(10 mM) were unable to influence growth (data not

shown). Despite this, siRNA removal of ERa produced

some growth inhibition suggesting a reduced but still

measurable dependency on ERa.

In conclusion, these results suggest that multiple

changes contribute to endocrine resistance. While ER

still demonstrates functionality in LCC1 cells, there is a

major shift to ligand independence. This independence

can be explained by the high level of ER expression

found in these cells and could lead to constitutive

activation of the receptor. These cells still show a degree

of dependency on estrogen and this can be blocked by

tamoxifen. Further changes were produced by exposure

and development of resistance to fulvestrant including a

loss of ERa Ser118 activation, which could account for

its loss of sensitivity to estrogen. These data support the

view that in the early stages of resistance, SERDs may
www.endocrinology-journals.org
provide a useful therapeutic option, but other

approaches will be required when resistance has

developed to these agents.
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Abstract— Though supervised and unsupervised analyses of
genomic data have been intensively studied in recent years, little
effort has been made to discover the structural information
contained in the data. In this work, we propose a stability analysis
guided supervised clustering and visualization method aiming to
discover the hierarchical structure in gene expression data, which
we call the “tree of phenotypes”. We applied the method on two
multiclass gene expression microarray data sets and presented
the biological plausibility of the learned trees. We also tested the
multiclass classifiers built on the learned trees and demonstrated
their good classification performance.

I. INTRODUCTION

High throughput genomic data usually consists of tens of
thousands of features and a relatively small number of samples
of different diseases or disease subtypes. Supervised analysis
of genomic data mainly refers to constructing classification
schemes by learning from the dependencies between gene
expression values and the given labels of phenotypes [1].
The common practice of supervised learning is to design
and apply multiclass classifiers with parallel structures, such
as multiclass Support Vector Machines [2], neural networks
[3], and Nearest Shrunken Centroids [4]. When the number
of classes increases, the complexity of a parallel-structured
classifier also increases. Given limited samples in a high
dimensional space, it is difficult to avoid overfitting without
compromising the prediction performance. It is also hard to
find a single set of genes on which the entire multiclass
problem can be reliably solved.

Using tree classifiers, we can alleviate these problems [5],
[6], [7]. In the tree paradigm, the original classification task
is tackled by a series of simpler tasks. Each task might only
require simple classification models to yield high prediction
accuracy. The classification accuracy of tree-based methods
is generally competitive with other classification paradigms
and structures. Achieving good classification performance is
not the only motivation for exploring the tree of phenotypes.
The tree structure provides coarse-to-fine views of the data
and its class structure, which reveals the relationship between
classes (in our application context, phenotypes); moreover, at
each node in the tree, we can identify a small set of features
(genes) that well account for the differences between the
phenotypes associated with a given node. The tree structure

can be constructed based on a priori knowledge, or it can
be learned directly from the data [5]. For example, Shedden
et al. proposed a pathological tree based on tumor ontogeny
[6]. Such a tree is independent of any particular data set and
therefore is not affected by the sample size and the data quality.
The main problem associated with this approach is that the
information expressed by the tree is largely confined by the
prior knowledge, which could be incomplete or inaccurate.
For example in Shedden et al.’s tree, 7 tumor types, such
as lung cancer and prostate cancer, are grouped together to
form a single node that represents the non-Mullerian tumors.
This does not provide any information about the relationships
between these seven types.

In this paper, we propose a method that learns this structural
information from gene expression profiles and their pheno-
typical labels. We first introduce the stability analysis based
method for learning a tree of phenotypes from gene expression
data. We then describe how to construct a tree classifier given
the learned tree structure. Lastly, we apply our method on two
microarray data sets, identify the biological structures obtained
by our tree learning algorithm, and demonstrate the prediction
performance of the tree classifiers.

II. LEARNING THE TREE OF PHENOTYPES

A tree of phenotypes is a natural way to describe the
relationship between diseases or disease subtypes. We devise
a method that learns the relation between phenotypes with the
guidance of human interaction, namely Color-Coded Super-
vised Mode VIsual Statistical Data Analyzer (ccsmVISDA),
an extension of the original VISDA algorithm [8]. This method
gives the capability to discern unknown relationships between
phenotypes that are latent within the data. To assure good gen-
eralizability for small sample sizes, the tree learning procedure
includes a leave-one-out “stability” analysis that we propose.
The final predicted tree is the one receiving the most votes,
among all the leave-one-out trees.

A. Learning Trees by ccsmVISDA

The ccsmVISDA algorithm hierarchically displays the
classes and constructs a tree. We call a tree node with two or
more classes a composite node, and a tree node with only one
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class a terminal node. Starting from the root node, samples
are partitioned into clusters to grow the tree. A cluster is
considered as a composite node if it contains more than one
class; otherwise, it is a terminal node. At each composite node,
the local data is first projected onto a visualization subspace
that allows the user to interactively initialize the clustering.
The cluster partition is iteratively updated until a stable state
is reached. During the updating, samples from the same class
are forced to be assigned to the same cluster, i.e. clusters learn
to fully “own” either one or multiple classes.

Before constructing the tree, we first filter the genes by their
signal-to-noise ratios (SNR). The purpose is to remove those
non-discriminatory genes and ease the computational demand.
Suppose the data set consists of K classes with p genes; each
class has nk samples, k = 1, . . . , K . Denote the mean and
standard deviation of data from class k and gene i by µik and
σik , where k = 1, . . . , K and i = 1, . . . , p. We define the SNR
via:

SNR(i) =

∑K−1
u=1

∑K

v=u+1 πuπv(µiu − µiv)2

∑K

k=1 πkσ2
ik

(1)

πk = nk

/

∑K

j=1nj , k = 1, . . . , K.

The top m genes, with highest SNRs, are used to represent the
data. Here m is proportional to K and determined empirically.
We apply ccsmVISDA on the filtered data.

Suppose at a composite node there are n0 samples with m
genes coming from K0 classes. Denote the mean vector and
the covariance matrix of class c by µc and Cc. All the samples
are first projected onto a two-dimensional space selected by
multiclass Fisher’s discriminant analysis [9], which utilizes the
class information to find the most discriminatory subspace for
the K0 classes. The projection space is spanned by the two
vectors that maximize Fisher’s criterion [9], i.e.

W0 = argmax
W

{

trace(WT
S
−1
w SbW)

}

, (2)

where W0 is a m by 2 matrix. Here, the within class scatter
matrix Sw is defined as [9]

SW =

K0
∑

c=1

πcCc (3)

and the between class scatter matrix is defined as [9]

Sb =

K0−1
∑

i=1

K0
∑

j=i+1

πiπj(µi − µj)(µi − µj)
T. (4)

Here πc is the mixing proportion of class c, i.e.

πc = |Ic| /n0 (5)

with Ic the index set of the samples from class c, and |Ic| the
size of set Ic. Each sample t in the m-dimensional space is
projected into the 2-D space

x = W
T
0 t. (6)

Given the 2-D visualization of the samples, the user is
required to determine both the number of clusters (M , M ≤

K0) and the initial location µxk for the center of each cluster
k in the projection plot. Each cluster is modeled by a single
Gaussian distribution. Denote the probability density function
of a Gaussian distribution by

p(x |µ,C), (7)

µ the mean vector and C the covariance matrix. In order to
get a more robust partition of the samples, the user is further
required to select two more partition schemes that have M −1
and M + 1 clusters. All three partition schemes will undergo
the same clustering process. For the partition scheme with M0

clusters (M0 ∈ {M−1, M, M+1}), after the user has selected
the centers, each sample xi is assigned to a cluster gi such
that

gi = argmin
k∈{1,...,M0}

{‖xi − µxk‖} . (8)

This initial partition of the data into clusters is iteratively
updated by an EM-like, two step procedure. Denote the
partition at the n’th iteration by

S(n) =
{

S
(n)
1 , S

(n)
2 , . . . , S

(n)
M0

}

, (9)

where S
(n)
k is the index set of the samples that are assigned

to cluster k.
In the first step of each iteration, each sample is assigned

to a cluster. Define

z
(n)
ik =











δ(gi − k), n = 0

π
(n)
k p(xi |µ

(n)
xk ,C

(n)
xk )

∑M0

j=1 π
(n)
j p(xi |µ

(n)
xj ,C

(n)
xj )

, n ≥ 1
(10)

where δ(·) is the Kronecker delta function, i.e.

δ(y) =

{

1, y = 0
0, y 6= 0.

When n ≥ 1, z
(n)
ik is the a posteriori probability that the

sample xi belongs to cluster k. Each class l is assigned to a
cluster kl such that

kl = argmax
k∈{1,...,M0}

{

∑

i∈Il

z
(n)
ik

}

. (11)

Note that, through this operation, multiple classes may be
assigned to the same cluster. The partition S(n) is updated
accordingly:

S
(n)
k =

⋃

l:kl=k
l∈{1,...,K0}

Il, k = 1, . . . , M0. (12)

In the second step, the mean vector and covariance matrix
of each cluster are updated by

µ
(n+1)
xk =

∑

i∈S
(n)
k

xi
∣

∣

∣
S

(n)
k

∣

∣

∣

, (13)

π
(n+1)
k =

∣

∣

∣
S

(n)
k

∣

∣

∣

∑M0

i=1

∣

∣

∣
S

(n)
i

∣

∣

∣

, (14)
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C
(n+1)
xk =

∑

i∈S
(n)
k

(xi − µ
(n+1)
xk )(xi − µ

(n+1)
xk )T

∣

∣

∣
S

(n)
k

∣

∣

∣

. (15)

Eqs.10-15 describe the operations for updating the partition.
They are repeated until the partition (Eq.9) no longer changes.

The best partition is then determined by the user, with the
guidance of the Minimum Description Length (MDL) score
for each of the three partitions [8]. The MDL score for the
partition with M0 clusters is

MDL(M0) = −

n0
∑

i=1

log p(xi) +
6M0 − 1

2
· log n0, (16)

M0 ∈ {M − 1, M, M + 1}, where p(x) is the probability
density function of the mixture of Gaussians

p(x) =

M0
∑

k=1

πk p(x |µxk,Cxk). (17)

After the optimal partition is determined, each cluster be-
comes a child node of the current composite node, and the
partitioning is repeated until each node contains all the samples
from one class.

We pursue such a human-interactive visualization approach
within the mixture modeling for two complementary reasons.
First, users of ccsm-VISDA can incorporate their knowledge
about the relations between phenotypes during construction of
the trees; second, such an approach can help users to discover
new relations between phenotypes. The merits of this approach
have been empirically evidenced by biological studies [10],
[11].

B. The Stable Solution of the Tree

Learning the tree from all the samples may cause overfitting
due to small sample size and potentially poor data quality.
Thus, we embed the ccsmVISDA learning procedure within
a leave-one-out stability analysis to generate “leave-one-out
trees”, and then take, as the final solution, the tree in this set
whose hierarchical class structure has the highest frequency
of occurrence. This winning tree reflects the underlying stable
structural information in the data because it is learned from
the data set and amongst all learned trees best survives small
disturbances of the data [12]. The stability analysis based
ccsmVISDA algorithm (SA-ccsmVISDA) is more robust than
other solutions in the sense that, given different realizations
of the data distribution, the algorithm will output similar
solutions. The robustness of the tree learning algorithm is
critical to making scientific discoveries, since the learned tree
must be reproducible with high probability in the face of small
data variations, in order to be used as a hypothesis for the
underlying relations between phenotypes.

Let the set of all possible hierarchical class structures with
K terminal nodes be the sample space ΩK , which contains all
distinguishable outputs of a tree learning algorithm on a given
set of samples consisting of K classes. There is a distribution

of the output tree structures associated with the tree learning
algorithm. Let

T : Ωk 7→ Z
+, (18)

where T is a random variable whose values are the indices of
tree structures. We can use entropy to measure the stability of
the tree learning algorithm, given by:

H(L) = −
∑

t∈Z+

p(t) log p(t), (19)

where p(t) is the probability mass function of the derived
distribution for random variable T ; L is the tree learning al-
gorithm. We can estimate the distribution p(t) by the empirical
distribution of the leave-one-out tree structures generated by
SA-ccsmVISDA. Without loss of generality, we can always
define T such that it maps the distinctive outputs of SA-
ccsmVISDA to a set of consecutive positive integers starting
from 1. We simply set p(t) equal to 0 for those structures that
do not appear in the leave-one-out trees. In the experiments
we plot such empirical distributions and calculate the stability
measure using Eq.19.

In the experiments, we also show the distance measures
along the winning tree structure. The distance is defined as the
average of the Fisher’s criteria between all pairs of classes at a
composite node in the 2-D projection space, and is calculated
using all the samples. The distance is represented by the
common length of the links between a composite node and
all its child nodes.

The stability analysis based ccsm-VISDA approach for tree
learning based on leave-one-out is practically feasible given
the small sample sizes in most of the existing microarray
data sets. The amount of human interaction required for each
of the leave-one-out trials is not always the same. In the
experiments we have observed that leaving one sample out
each time usually will not change the structure of trees at
the top levels. The projections will mostly change at the
deeper levels, in the composite nodes that include the class
whose samples are left out. For such instances, we only need
to apply ccsm-VISDA once on those branches that are not
subject to change in a specific set of leave-one-out trials. Thus,
in practice, the human interaction in stability analysis based
ccsm-VISDA is less intensive than that required for repetition
of the ccsm-VISDA procedure over all leave-one-out training
sets. If the sample sizes are increased in future microarray
data sets, we can modify our approach to be semi or fully
automated by exhaustively searching the optimal number of
sub-clusters at each node, but in this case human users will
have less or no chance to incorporate their knowledge into the
structure of the trees. For existing microarray data with small
sample sizes, our stability analysis based ccsm-VISDA method
gives a reasonable balance between robustness and practical
feasibility.

III. TREE CLASSIFIER

The tree structure learned by SA-ccsmVISDA can be used
to build tree-based classifiers. Classification trees are a general
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framework for solving multiclass classification problems [5].
We can use potentially any classifier as the node classifier, and
use a different subspace for the particular classification task
on each node. Subspace feature selection will help not only
improving classification performance, but also in finding the
genes that primarily account for the similarities or differences
between subsets of phenotypes [6].

In the experiments, we used the feature filtering and selec-
tion method proposed by Shedden et al. [6]. First the control
genes are removed from the data. Then the expression values
are transformed by log[max(x, 0) + 50]. All those genes for
which the standard deviation across all samples is less than 0.7
are removed. For each sub-cluster on a composite node, the
set of α genes that have the highest mean expression values
(and greater than the mean expression values of all the other
sub-clusters combined) are selected. All these sets of genes
are combined to form the subspace. Here the range of α is
determined by the user and all the nodes use the same value
of α. The optimal value of α is selected to achieve the lowest
leave-one-out cross validation error rate of the tree classifier.

We use one-versus-rest multiclass Support Vector Machines
(OVR-MSVM) [2] as the node classifiers. For a given data
set, we evaluate both the hard classifier whose outputs are
class labels and the soft classifier whose outputs are confidence
values [13].

In the hard classification scheme, for each sub-cluster on
a composite node a binary SVM is trained in the selected
subspace to separate the sub-cluster from all others. A testing
sample will be assigned to the sub-cluster whose associated
binary SVM has the largest real-valued output, and will be
passed to the child node corresponding to the sub-cluster.
When the testing sample reaches a terminal node, it will be
classified to the phenotype associated with the terminal node.

In the soft classification scheme, an OVR-MSVM is trained
in the same way as in the hard classification scheme except
that for each binary SVM the real-valued output is transformed
to produce a posteriori probabilities. We applied the method
proposed by Platt [13] to derive this transformation. The a
posteriori probability output of an OVR-MSVM is given in
the form

g∗i (x) =
gi(x)

∑M0

k=1 gk(x)
, i = 1, . . . , M0, (20)

where gi(x) is the transformed SVM output specified in [13].
When a testing sample is tested from the root node to each
terminal node, the simulated a posteriori probabilities are
multiplied together. The output at each terminal node is taken
as the a posteriori probability of the sample belonging to the
phenotype associated with the node. The sample is assigned
to the phenotype with the highest simulated a posteriori
probability. We will see in the experiments that the soft
classification scheme improves the performance of the tree
classifier.

IV. EXPERIMENTS

In the experiments, we applied the stability analysis based
ccsmVISDA on the Muscular Dystrophy data set to generate

the tree of 9 subtypes of muscular dystrophies and on the MIT
cancer data to generate the tree of 14 cancers. For each data
set, we also evaluated the performance of the tree classifiers
built on the tree of phenotypes.

A. Muscular Dystrophy Data Set

The muscular dystrophy data set (provided by Children Na-
tional Medical Center (CNMC), Center for Genetic Medicine)
consists of 108 samples with 11252 genes from 9 diagnostic
groups of muscular dystrophies. The name and the number of
samples of each group are: amyotrophic lateral sclerosis (ALS,
n=9); acute quadriplegic myopathy (AQM, n=5); calpain III
deficiency (Calpain3, n=10); Duchenne muscular dystrophy
(DMD, n=10); dysferlin deficiency (Dysferlin, n=10); fukutin
related protein deficiency (FKRP, n=7); fascioscapulohumeral
dystrophy (FSHD, n=14); normal human muscle (NHM,
n=18); and juvenile dermatomyositis (JDM, n=25).

We applied SA-ccsmVISDA on the data and derived 108
leave-one-out trees showing 12 different structures. The em-
pirical distribution of the trees is shown in Fig.1. The entropy
calculated using Eq.19 is about 1.4208. The frequency of the
winning tree is 67/108 ≃ 0.62.
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Fig. 1. The empirical distribution of the tree structures for the Muscular
Dystrophy data set. The abscissa is the index of the structures, which is in
descending order of frequencies. The ordinate is the frequency. The number
on the top of each bar is the number of occurrences of the structure. The
entropy H(L) of the set of tree structures is about 1.4208.

The structure of the winning tree is shown in Fig.2 with
subtype names on the terminal nodes. The winning tree is
supported by many known clinical, genetic and histological
features of these disorders. ALS is the only denervating
disorder, due to die-back of motor neurons. A number of
the muscular dystrophies are caused by abnormalities in
the plasma membrane of the muscle fiber: Calpain3, DMD,
Dysferlin and FKRP are all such membrane dystrophies, and
all group together. FSHD is a unique disorder due to a
heterozygous deletion in chromosome 4q, and by our SA-
ccsmVISDA approach this maps distinctly, as does normal
human muscle (NHM) and an autoimmune disease, JDM.

Based on the winning tree structure, we built hard and
soft tree classifiers using the subspace selection method [6]
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Fig. 2. The structure of the winning tree for the Muscular Dystrophy data
set. The subtypes of muscular dystrophies are shown on the terminal nodes.
The distance measures are shown along the links.

TABLE I

LEAVE-ONE-OUT ERROR RATES (IN PERCENTAGE) FOR HARD AND SOFT

CLASSIFICATION SCHEMES ON THE MUSCULAR DYSTROPHY DATA. IN

PARENTHESES ARE THE VALUES OF α. THE LOWEST ERROR IS IN BOLD

FACE.

C 0.001 0.01 0.1 1.0 10.0

Hard 23.15 (800) 12.96 (250) 12.04 (50) 12.04 (50) 12.04 (50)
Soft 12.04 (300) 11.11 (400) 11.11 (300) 10.19 (400) 11.11 (50)

described in section 3 and OVR-MSVM as the node classifier.
The gene expression values were transformed by log(x) before
evaluating the classifiers. The OVR-MSVM uses linear SVMs
as the binary components. The complexity of a linear SVM
can be controlled by a penalty value, C. We use the same
C value for each linear SVM in each of the OVR-MSVMs.
We tested 5 values for C: 0.001, 0.01, 0.1, 1.0 and 10.0.
In order to determine an optimal subspace size, for each C
value we tested 25 different values for α: 1, 2, 5, 10, 20 and
the sequence {50k, k = 1, . . . , 20}. All these tree classifiers
are evaluated by leave-one-out cross validation. In Table.I, we
list the lowest error rates (in percentage) for both soft and
hard classification schemes for each C value. The values in
parentheses are the values of α at which the performances are
achieved. In Fig.3, we plot the leave-one-out error rates of soft
and hard classification as functions of α for C = 1.0. It can
be seen that soft classification improves the performance for
most cases. The lowest error rate is 10.19% when C = 1.0
and α = 400.

B. MIT Cancer Data Set

The MIT cancer data was originally proposed in Ra-
maswamy et al. [2]. The data set has 16063 genes. It contains
a training set with 144 samples and an independent testing set
with 54 samples of 14 cancer types. The control genes are
removed from the data before all the following experimental
steps.

We applied SA-ccsmVISDA on the training set and gener-
ated 144 trees in the leave-one-out loop. The 144 trees demon-
strate 20 different structures, whose empirical distribution is
shown in Fig. 4. The entropy of the empirical distribution
calculated using Eq.19 is about 1.3344. The frequency of the
winning tree is 102/144 ≃ 0.71. The structure of the winning
tree with the cancer types shown on the terminal nodes is
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Fig. 3. Leave-one-out error rates of hard and soft classifiers on the Muscular
Dystrophy data set for C = 1.0.

illustrated in Fig. 5.
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Fig. 4. The empirical distribution of the tree structures for the MIT cancer
data. The entropy H(L) of the set of tree structures is about 1.3344.

Using the same scheme as for the muscular dystrophy data
set, we evaluated the hard and soft tree classifiers for the MIT
cancer data. Before the evaluation, the gene expression values
were transformed and the genes were filtered just as Shedden
et al. did in [6]. The lowest leave-one-out error rates for
different values of C are listed in Table.II. The curves of leave-
one-out errors of soft and hard classifications as functions of
α are illustrated in Fig. 6. The best classification accuracy of
our tree classifiers is about 87.5% when C = 1 and α = 200.
Our results compare favorably with those of Ramaswamy et
al. [2], who used a parallel OVR-MSVM to classify the 14
cancers and achieved a 78% accuracy on the training set of
144 samples using leave-one-out cross validation.

As a means to explore the biological implications of our
solution, we compared our tree to Shedden et al.’s tree based
on pathologic and ontologic knowledge [6]. Our solution
has notable similarities to this tree, consistently classifying
lymphoma, leukemia, CNS and epithelial cancers into groups
in which lymphoma and leukemia are closely related and
CNS and epithelial cancers are closely positioned. Cancers of
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Fig. 5. The structure of the winning tree for the MIT cancer data. The
cancer types are shown on the terminal nodes. The distance measures are
shown along the links.

TABLE II

LEAVE-ONE-OUT ERROR RATES (IN PERCENTAGE) FOR SOFT AND HARD

CLASSIFICATION SCHEMES ON THE MIT CANCER DATA. IN THE

PARENTHESES ARE THE VALUES OF α. THE LOWEST ERROR IS IN BOLD

FACE.

C 0.001 0.01 0.1 1.0 10.0

Hard 21.53 (450) 16.67 (200) 15.97 (200) 15.97 (200) 15.97 (200)
Soft 16.67 (250) 13.19 (250) 13.19 (200) 12.50 (200) 13.19 (200)

the uterus, breast, lung, colon, bladder, kidney and pancreas
are consistently and appropriately classified into the same
group. A major difference between the two trees is the
location of the mesotheliomas (a rare cancer) and melanomas.
Applying an independent data-driven approach to the same
data set, Tibshirani and Hastie [7] generated a tree broadly
similar to ours, in which the melanomas and mesotheliomas
also clustered differently than predicted by the Shedden et
al. construct. Further analysis of the similarities among the
melanomas, mesotheliomas and their most closely related
cancers may generate new insights into common molecular
functions among these cancers.

V. CONCLUSION

In this paper, we proposed a stability analysis based data
visualization algorithm that learns the tree of phenotypes from
genomic data with human guidance. We applied the algorithm
on two gene expression microarray data sets. The efficacy of
the algorithm is demonstrated by the biological information
discerned in the derived trees. We also demonstrated the
prediction performance of the multiclass classifiers built on
the derived trees.

This hierarchical representation of phenotypes has the power
to reveal both global and local structures that are important
for understanding the relationships between phenotypes. By
selecting a different subspace on each composite node, we can
find the genes that are important for explaining either the sim-
ilarity or the difference between phenotypes in a given group.
The human guided visualization approach is more robust to
corrupted data and the small sample size problem than purely
automated methods. By embedding the tree learning procedure
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Fig. 6. Leave-one-out error rates of the hard and soft classifiers on MIT
cancer data for C = 1.0.

within the stability analysis framework, we can generate more
stable and more generalizable tree solutions given a limited
number of samples.
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 Abstract – In this paper, we report a new gene clustering 
approach - non-negative independent component analysis 
(nICA) - for microarray data analysis. Due to positive nature of 
molecular expressions, nICA fits better to the reality of 
corresponding putative biological processes. In conjunction with 
nICA model, VIsual Statistical Data Analyzer (VISDA) is 
applied to group genes into modules in the latent variable space. 
The experimental results show that significant enrichment of 
gene annotations within clusters can be obtained. 
Keywords – non-negative ICA, latent variable model, gene 
clustering, module discovery, microarray data analysis  

I. INTRODUCTION 

icroarray technologies provide powerful tools for 
genome-wide measurement of gene expressions. To  

discover functional modules involved in pathway signaling or 
gene regulation, new computational methods are required for 
modeling and analysis of microarray data of interest [1]. 

Gene clustering is widely used in the analysis of gene 
expression data by partitioning genes into clusters sharing 
similar expression patterns. The underlying assumption is that 
genes with similar patterns are more likely associated with 
common functions. Hierarchical clustering and self-
organizing maps [2], have been applied to group the genes 
into functional modules. Recently, Independent Component 
Analysis (ICA) has been proposed for modeling gene clusters 
[3]. In contrast to traditional clustering methods, ICA-based 
clustering relies on a linear combination of latent biological 
processes and has revealed the gene clusters with significant 
enrichment of gene annotations or functional categories [3]. 
In contrast to PCA, ICA decomposes input data into 
components as independent as possible, showing some 
advantages over PCA for gene module decomposition [5].

In this paper, we report the application of non-negative 
ICA (nICA) for gene clustering, exploiting the non-negative 
nature of molecular expressions. In principle, nICA can be 
thought as a projection method where the expression levels 
are projected onto some new non-negative bases (i.e. 
components) with minimum statistical dependence. The nICA 
representation shall better reflect the biological reality. We 
then use VIsual Statistical Data Analyzer (VISDA) [6] to 
generate gene modules in the latent variable space. VISDA 
uses hierarchical Standard Finite Normal Mixtures (SFNM) 
to model clustered data where each gene belongs to each 
cluster with a posterior probability. The clustering procedure 
follows a hierarchy fasion. At each level of the hierarchy, 
each cluster is considered for further split, until no cluster is 
decomposable according to the Minimum Description Length 
(MDL) criterion or human justification.  

This paper is organized as follows. In section II, we 
introduce the principle of nICA for finding gene module 
composites and a gradient descent algorithm of nICA. A brief 
description of the VISDA algorithm is also given in Section 
II to cluster independent components as a post-processing of 
nICA modeling. The application of nICA and VISDA to 
yeast data will be reported in Section III. Discussions and 
conclusions are given in Section IV. 

Latent Variable and nICA Modeling of Pathway Gene Module Composite 
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II. METHODOLOGY 

The problem of basic ICA is given according to the 
following linear relation: 

                                                           (1)x As 
where s = (s1, s2… sN) is a vector of real independent sources 
and x = (x1, x2… xN) is an observation vector. The 
assumptions of ICA are that sources are mutually 
independent and of non-Gaussian distribution except for at 
most one source. When we apply ICA to real-world problems 
like gene expression analysis, the situation is different from 
the above ideal case because of the ambiguities of ICA: the 
sign and permutation of sources. To resolve these 
ambiguities, many researchers make further assumptions to 
constrain the ICA model. For example, non-negativity is a 
natural constraint for many real-world applications, such as 
blind separation of natural scenes [7]. Since we assume that 
the underlying biological processes are independent and their 
expression levels should be non-negative, nICA is believed to 
be a more proper model to represent a linear influence of 
hidden cellular variables than ICA is. By projecting the data 
to the latent space spanned by these non-negative 
independent processes, fine structure of co-regulation of 
genes is maintained and made prominent. VISDA clustering 
is then applied to catch the characteristics of those subtle 
differences, which may lead to identify more coherent gene 
groups (Fig. 1).

A. nICA-based decomposition and the algorithm of nICA 

As it has been known, clustering by expression pattern or 
“co-expressed” genes under limited experimental conditions 
does not provide the best possible grouping of genes by 
biological processes [8]. ICA-based gene clustering approach, 
on the other hand, is built upon a latent variable model of 
gene module composite. The attraction of ICA clustering lies 
that it can account for independent hidden effects that 
influence gene expression. When we introduce the non-
negativity into the ICA algorithm, the resulting nICA 
approach can incorporate prior knowledge for better 
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modeling hidden sources while keeping all the advantages of 
ICA approach. 

In our nICA model, gene express is a linear combination 
of biological mechanisms including pathways of signaling 
substances, transcription factors and their binding sites in the 
promoter regions of genes, as well as other different kinds of 
regulation [3]. We use nICA to project expression data X to 
the independent mode in order to highlight these factors. We 
assume that x(i, j) which is the expression level of gene i 
under phenotype j is expressed by the sum of non-negative 
independent putative biological processes sk(i), k = 1, 2, …, 
N, weighted by the involvement strength ak(j), k = 1, 2, …, N.  

Fig. 1 Framework of nICA and VISDA for the composite module discovery

In [7], the author suggested a mathematical approach to 
impose non-negative constraint on sources. And if we define 
non-negative well-grounded sources as: 

( ) 0    for 0   
( 0) 0     1, 2, ...,                            (2)

k

k

p s
p s k N

then it has been proven [7] that we can find y = Us, where U
is a square orthonormal rotation and permutation matrix, i.e. 
the elements of yi of y are a permutation of sources if and 
only if all yis are all non-negative. We note that y = Us can be 
re-written as y = Wz = WVx = WVAs with V a whitening 
matrix, z the pre-whitened observation vector and W an 
unknown orthonomal (rotation) matrix. Therefore we can 
consider nICA as a procedure with the following two steps: 
1) remove the second order statistics by whitening; 2) search 
for a rotation matrix where all the data fit into the positive 
quadrant.  

As described in [7], we can use the cost function J defined 
in the  following to find the global minimum: 

2

1 2

( ) { }                                 (3)

max(0, )

( , , )

T

i i

N

J E

y y

y y y

W z W y

y Wz

y L
Based on the gradient descent rule, a learning algorithm to 

find the de-mixing matrix W is defined as follows [7]: 
1) Pre-whitening the observed data x:

                                                           (4)z Vx
2) Using gradient descent algorithm to minimize the cost 
function (3):  

                                      (5 )JW W
W

3) Projecting the unconstraint gradient descent set onto a set 
of orthonormal vectors. 

B. Pre-screening for the clustering 

After nICA, we obtain some independent components 
describing some distinct biological processes. In these 
putative biological processes, some genes showing relatively 
high or low expression levels are most interesting.  We will 
use a pre-screening procedure to single out these genes. 

Specifically, we can select a subsets of genes within one 
of the components, which includes over expressed genes 
(which are activated) and down expressed genes (which are 
repressed) according to the value of each gene in the 
component [3]: 

a subset of genes = 
{ %  of largest values of }genes igenes L C y

{ % of smallest values of }genes igenes L C yU
 By this pre-screening step, we actually remove some 

invariant genes in each component. By taking the union of the 
selected genes, we provide a pool of more meaningful and 
relevant genes to biological processes for the next step-
clustering - to identify genes that belong to co-expressed 
modules in each component. 

C. VISDA clustering 

In this step, we will cluster genes into modules associated 
with their values in the independent components. VISDA 
employs the hierarchical SFNM model for hierarchical 
clustering. The hierarchical SFNM model uses the following 
probability density function to describe the relationship 
between successive levels in the hierarchy, 

0

0

1 1

1 1

f , g
        6

1 1    

k

k

K L

k j k j k
k j

K L

k j k
k j

and

r r

where r denotes the genes to be grouped, the upper level has 
K0 clusters, the kth cluster in the upper level has LK sub-
clusters in the lower level, k is the mixing proportion of the 
kth up level cluster, j|k is the mixing proportion of the jth 
sub-cluster in the kth upper level cluster, g( )  is Gaussian 
distribution function, j|k are the parameters associated with 
the sub-cluster. The fitting process of this model is executed 
by the Expectation Maximization (EM) algorithm [6], which 
achieves a local maximum of the likelihood function.  
 For each cluster at a level of the hierarchy, VISDA uses 
two different projection methods, Principle Component 
Analysis (PCA) and Principle Component Analysis – 
Projection Pursuit (PCA – PPM) [6], to visualize the sub-
clusters within the clusters. The user chooses one of the 
projections that he/she thinks better revealing the data 
structure. On the chosen projection, user initializes models 
with different number of clusters by clicking on the computer 
screen at the centers of the clusters. These 2-D models will be 
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Fig. 2 Comparison of the scatter plots of the first three independent 
components from nICA/ICA. (a) Results from nICA; (b) Results from 
ICA. Each sub-panel shows the two subsequent components plotted 
against each other. In (a), process-specific genes are highly biased on two 
non-negative axes, whereas the results of ICA in (b) are not.

refined by EM algorithm and compete according to MDL 
criterion or human justification. The winning model in 2-D 
space will be transferred back to original data space to 
initialize the data model in that space. Then EM algorithm in 
original data space will refine the model and obtain the 
partition of data at that level. When no more new clusters can 
be found in the model validation step, the algorithm ends and 
a final partition is obtained. 

III. RESULTS
A. Data treatment 

We applied nICA to Saccharomyces cerevisiae gene 
expression dataset [9]. The dataset contains 6152 genes with 
Open Reading Frames (ORFs) and 173 samples that include 
the different experimental conditions [9]: temperature shocks, 
amino acid starvation, and progression into stationary phase 
etc. As in [3], we also used KNNimpute to fill in missing 
values. And due to the triviality of clustering environmental 
stress response (ESR) genes defined by [9], we eliminated 
them in our analysis. The final dataset contains 5284 genes 
and 173 samples. To evaluate the experimental results, we 
measured the biological significance of each cluster using 
Gene Ontology (GO) annotation database. We mainly 
measured each cluster of nICA in terms of the biological 
process and molecular functional categories using p-value 
[3].  

B. Experiment and results evaluation 

To use nICA model, we took the inverse-logarithm of the 
data before further analysis. Hence, in our nICA model, the 
microarray expression corresponds to a linear additive model 
of interactions among biological processes.  Since our goal is 
to find some most relevant components, dimension reduction 
using PCA was first applied to the data with 90% of energy 
maintained. Then nICA was applied to the dimension reduced 
dataset. As a result, we obtained the eighteen non-negative 
independent components. For comparison, we also did the 
experiment using an ICA algorithm with the same 
parameters. 
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Fig. 3 Z score for the nICA (asterisk) and ICA (circle). At each level of 
the hierarchy of VISDA, we recorded all the intermediate clusters. At 
last, we got 41 clusters for nICA and 28 clusters for ICA. We inputted all 
these clusters to compute the z scores and drew the curves here. So based 
on the figures, it is reasonable to draw the conclusion that clustering 
methods by nICA has found a finer structure than ICA has.

Fig. 2 shows the first 3 independent components from 
nICA and ICA respectively. It is clear that, comparing to 
ICA, nICA is effective in separating sources as independent 
non-negative “biological processes” in which process-specific 
genes are highly biased onto two orthogonal axes respectively 
showed in each sub-panel in Fig. 2.  

In Table 1 we only listed seven most significant clusters 
resulted from our nICA and VISDA approach. We measured 
the biological significance of each cluster using GO 
annotation database. The p-value of each cluster was 
calculated according to its overlap with the functional 
annotations in GO (see [3] for the details). Among those 
functional categories detected significantly by both nICA and 
ICA clusters, there are five out seven clusters that nICA 
produced significant lower p-values than ICA did. From these 
experiments, it seems to us that nICA followed by VISDA 

can extract more coherent groups of genes in terms of their 
functional categories. 

To further evaluate our nICA-based clustering method, we 
used the z-score introduced in [8] to conduct a comparative 
study. As described in [8], the z-core is based on the mutual 
information between clustering results and the gene 
annotation. The higher scores indicate clustering results more 
significantly. We compared the clustering results of nICA and 
ICA under the same parameters and the z scores are shown in 
Fig. 3. As we can see from Fig. 3, nICA algorithm 

5874



consistently performed better than ICA with an average 
increase of z-score of 5. 

IV. CONCLUSION AND DISCUSSION 

This paper presents a new gene clustering approach, 
namely nICA-based approach for composite module 
discovery. By projecting the gene expression data onto nICA 
space, co-regulation structure of modules are revealed and 
highlighted. Using a pre-screening and VISDA clustering 
procedure, we can identify biological process enriched 
clusters with coherent functional annotations. The 
experimental results on a yeast data set have demonstrated its 
advantages over conventional ICA-based approach. 

Although nICA-based approach exhibits some promise 
for gene clustering, there is future work to be conducted. For 
example, we notice that in the de-mixing matrix W, there are 
some negative values that need to be properly explained, i.e., 
how these composite modules are involved in the 
corresponding biological process. Another possible direction 
is that we may perform gene clustering to find groups of 
genes under distinctive regulators or combinations of genes 
of these regulators. 

ACKNOWLEDGMENT 

This work was partially supported by the National 
Institutes of Health under Grants (CA109872, NS29525, 
EB00830, and CA096483) and the Department of Defense 
under Grant (BC030280). 

TABLE I
THE SEVEN MOST SIGNIFICANT CLUSTERS OF NON-NEGATIVE ICA 

Cluster index Gene Ontology term Cluster frequency Genome frequency of use P-value 
6 Ty element transposition (24 / 73, 32.8%) (95 / 7291, 1.3%) 3.7E-27 

DNA transposition (24 / 73, 32.8%) (108 / 7291, 1.4%) 7.3E-26
DNA recombination (24 / 73, 32.8%) (192 / 7291, 2.6%) 4.2E-20
RNA-directed DNA polymerase activity (14 / 73, 19.1%) (52 / 7291, 0.7%) 2.2E-16 
DNA-directed DNA polymerase activity (15 / 73, 20.5%) (67 / 7291, 0.9%) 2.5E-16

16 glycolysis (9 / 109, 8.2%) (21 / 7291, 0.2%) 4.5E-11 
Glucose metabolism (12 / 109, 11.0%) (65 / 7291, 0.8%) 3.6E-10 

17 proteolysis (40 / 250, 16%) (164 / 7291, 2.2%) 4.3E-22 
ubiquitin-dependent protein catabolism (24 / 250, 13.6%) (128 / 7291, 1.7%) 5.5E-20
endopeptidase activity (25 / 250, 10%) (62 / 7291, 0.8%) 4.5E-19 

22 amino acid and derivative/metabolism (21 / 43, 48.8%) (199 / 7291, 2.7%) 8.5E-22 
amino acid metabolism (20 / 43, 46.5%) (183 / 7291, 2.5%) 5.4E-21 
oxidoreductase (10 / 43, 23.2%) (247 / 7291, 3.3%) 1.4E-06 

23 amino acid biosynthesis (19 / 85, 22.3%) (102 / 7291, 1.3%) 1.0E-17 
catalytic activity (43 / 85, 50.5%) (1937 / 7291, 26.5%) 2.1E-06 

24 cellular response to nitrogen starvation (4 / 47, 8.5%) (5 / 7291, 0.0%) 3.9E-08 
cellular response to nitrogen levels (4 / 47, 8.5%) (5 / 7291, 0.0%) 3.9E-08 
asparagine (4 / 47, 8.5%) (5 / 7291, 0.0%) 3.9E-08 

33 generation of precursor metabolites and energy (32 / 68, 47.0%) (231 / 7291, 3.1%) 8.8E-30
oxidative phosphorylation (19 / 68, 27.9%) (46 / 7291, 0.6%) 4.0E-26 
hydrogen ion transporter activity (20 / 68, 29.4%) (55 / 7291, 0.7%) 2.1E-26 

The selected clusters are listed along with the functional categories with the smallest p-value. Numbers in parentheses in the third column show the number 
and percentage of genes within the cluster that are presented in one of the functional category. For instance, (24/73, 32.8%) means the cluster has 73 genes, 
among which 24 (32.8%) genes are annotated with “Ty element transposition”. And the numbers in the fourth column are presented in the similar way 
which corresponds to the total number within the whole genome set that are annotated with one of the special categories in GO system.
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